Abstract:
A drive axle system for a vehicle drive train having a clutching device is provided. The drive axle system includes a first shaft, a first axle assembly, a second axle assembly, a first clutching device, and a second clutching device. The first axle assembly is drivingly engaged with the first shaft. The first clutching device divides one of a pair of output axles into first and second portions. The second clutching device selectively engages a driving gear of the second axle assembly with one of the first shaft and a portion of the first axle assembly.
Abstract:
When a bus protocol message arrives on a connecting node in the network, a bus driver in the node captures the message and stores it into a message buffer where the message can be further processed by a tunneling application. Each received bus protocol message is broken, or combined, to suit the available packet size of the underlying transmit layer of the switch fabric network. Data portions such as message identification, sequence number, port number, bus data type, and data length are reserved in each data packet. If the message is being broken down, the sequence number is used to differentiate the broken segments of the bus protocol message. The bus data type is used to indicate the type of protocol data being transmitted over the switch fabric. The same tunneling application may be used to reassemble the bus protocol message at a receiving node.
Abstract:
A vehicle network and method for communicating information within a vehicle. The network includes a plurality of network elements joined by communication links. A data frame is provided for communicating information between a first device and a second device attached to the network. A network element in the network is capable of mapping a first resource on an incoming communication link of the network element to a second link resource of an outgoing communication link of the network element. The network element further has ports for receiving the data frame from the first link resource of the incoming communication link and for communicating the data frame to the second link resource of the outgoing communication link. The mapping may be done statically or dynamically such as based on information stored in the network element or based on information stored in the data frame.
Abstract:
An air suspension system for a vehicle having a variable spring rate is provided. The air suspension system includes a first rigid vehicle member, a second rigid vehicle member having a cavity formed therein, a resilient reservoir, and a valve. The resilient reservoir is coupled at opposing ends to the first rigid vehicle member and the second rigid vehicle member. The valve is in fluid communication with an interior of the resilient reservoir and the cavity of the second rigid vehicle member to form an air spring having a first spring volume and a second spring volume.
Abstract:
A drive axle system for a vehicle drive train having a clutching device is provided. The drive axle system includes a first shaft, a first axle assembly, a second axle assembly, a first clutching device, and a second clutching device. The first axle assembly is drivingly engaged with the first shaft. The first clutching device divides one of a pair of output axles into first and second portions. The second clutching device selectively engages a driving gear of the second axle assembly with one of the first shaft and a portion of the first axle assembly.
Abstract:
Disclosed herein are a variety of different electrical system topologies intended to mitigate the impact of large intermittent loads on a 12 volt vehicle power distribution system. In some embodiments the intermittent load is disconnected from the remainder of the system and the voltage supplied to this load is allowed to fluctuate. In other embodiments, the voltage to critical loads is regulated independently of the voltage supplied to the remainder of the system. The different topologies described can be grouped into three categories, each corresponding to a different solution technique. One approach is to regulate the voltage to the critical loads. A second approach is to isolate the intermittent load that causes the drop in system voltage. The third approach is to use a different type of alternator that has a faster response than the conventional Lundell wound field machine.
Abstract:
A hydrostatic driveline for a vehicle, a method for minimizing a fuel consumption rate of the vehicle, and a method for tracking an optimal state of charge function for a hydrostatic accumulator are provided. The driveline includes a power source, a drive axle, a first fluid accumulator, a second fluid accumulator, an auxiliary circuit including a first pump drivingly engaged with the power source, and a drive circuit including a second pump drivingly engaged with the power source, a motor drivingly engaged with the drive axle, and a directional valve. The second pump is in fluid communication with the directional valve and the directional valve in fluid communication with the first fluid accumulator and the second fluid accumulator. The directional valve may be selectively controlled to direct fluid from the second pump and the motor to the first fluid accumulator and the second fluid accumulator.
Abstract:
A clutch (22) includes a first member (48) rotatable with respect to a base member (14) in a first direction A and a second direction B, a second member (56) rotatable with respect to the base member, a rolling element (62) between the first and second members, and a ramp sleeve (58) disposed between the first and second members, and coupled to the base member such that the ramp sleeve is generally prevented from rotating with respect to the base member. The ramp sleeve includes a ramp (82). The second member includes a first rotational position with respect to the ramp sleeve and a second rotational position with respect to the ramp sleeve. The rolling element is configured to wedge against the ramp to prevent relative rotation of the first member with respect to the base member in the first direction when the second member is in the first rotational position. When the second member is in the second rotational position, the first member is able to rotate with respect to the base member in the first rotational direction.
Abstract:
When a bus protocol message arrives on a connecting node (28) a bus driver in the node captures the message and stores it into a message buffer where the message can be further processed by a tunneling application. Each received bus protocol message is broken, or combined, to suit the available packet size of the underlying transmit (28) layer of the switch fabric network. Data portions such as message identification, sequence number, port number, bus data type, and data length are reserved in each data packet. If the message is being broken down, the sequence number is used to differentiate the broken segments of the bus protocol message. The bus data type is used to indicate the type of protocol data being transmitted over the switch fabric (22).
Abstract:
Disclosed herein is a variety of different electrical system topologies intended to mitigate the impact of large intermittent loads on a 12 volt vehicle power distribution system. In some embodiments the intermittent load is disconnected from the remainder of the system and the voltage supplied to this load is allowed to fluctuate. In other embodiments, the voltage to critical loads is regulated independently of the voltage supplied to the remainder of the system. The different topologies described can be grouped into three categories, each corresponding to a different solution technique. One approach is to regulate the voltage to the critical loads. A second approach is to isolate the intermittent load that causes the drop in system voltage. The third approach is to use a different type of alternator that has a faster response than the conventional Lundell wound field machine.