Abstract:
Method for making a photovoltaic device and structure thereof. The method includes providing a substrate including a glass layer, a first conductive layer on the glass layer, and a cadmium sulfide layer on the first conductive layer. Additionally, the method includes depositing one or more first materials on the cadmium sulfide layer. The one or more first materials include a first quantity of chemical element cadmium and a second quantity of chemical element tellurium. Moreover, the method includes performing a first thermal treatment to at least the first quantity of chemical element cadmium, the second quantity of chemical element tellurium, and a third quantity of chemical element chlorine, so that a poly crystalline layer composed of at least cadmium telluride is formed on the cadmium sulfide layer. Also, the method includes depositing one or more second materials on a surface of the polycrystalline layer.
Abstract:
Photovoltaic material is printed on a substrate using acoustic printing, to produce solar cells. Acoustic printheads are configured to eject droplets of photovoltaic material to positions on the substrate, responsive to focused acoustic energy provided by acoustic ejectors in the acoustic printheads, to print a film of the photovoltaic material. A positioning system is configured to position the acoustic printheads with respect to the substrate. A feedback system controls the acoustic ejection of the droplets of photovoltaic material by the acoustic printheads or the positioning of the acoustic printheads with respect to the substrate by the positioning system, based on feedback data indicative of characteristics of the printed film. The acoustic printheads are designed optimally for printing of photovoltaic material for solar cells in single scans in only one direction of the substrate. Solar cells can be manufactured at low cost and with high throughput using acoustic printing.