Abstract:
Die Erfindung betrifft ein Verfahren zum Ausgeben einer Flüssigkeit. Das Verfahren ist dadurch gekennzeichnet, dass die Flüssigkeit aus einer Ausgabevorrichtung ausgegeben und eine Istposition der Flüssigkeit nach Ausgabe der Flüssigkeit aus der Ausgabevorrichtung ermittelt wird.
Abstract:
A printing system includes an identification module to identify a number of the encoder pulses generated by an encoder at a rate corresponding to a speed of a media during a time interval. The printing system also includes an alignment module to at least one of change the number of encoder pulses or scale the encoder pulses generated by the encoder based on an amount of variation between the number of encoder pulses detected and the number of encoder pulses to maintain the number of encoder pulses constant.
Abstract:
The present disclosure discloses a page wide array (PWA) printer (20) particularly but not exclusively for performing print jobs while maximizing print bar performance uniformity within the printer. The PWA printer includes a print bar which can be moved laterally and a controller which causes the print bar to laterally move from a first to a second position and causes the nozzles within the print bar to print an image while the print bar is in the second position without modifying the lateral alignment of the image.
Abstract:
Photovoltaic material is printed on a substrate using acoustic printing, to produce solar cells. Acoustic printheads are configured to eject droplets of photovoltaic material to positions on the substrate, responsive to focused acoustic energy provided by acoustic ejectors in the acoustic printheads, to print a film of the photovoltaic material. A positioning system is configured to position the acoustic printheads with respect to the substrate. A feedback system controls the acoustic ejection of the droplets of photovoltaic material by the acoustic printheads or the positioning of the acoustic printheads with respect to the substrate by the positioning system, based on feedback data indicative of characteristics of the printed film. The acoustic printheads are designed optimally for printing of photovoltaic material for solar cells in single scans in only one direction of the substrate. Solar cells can be manufactured at low cost and with high throughput using acoustic printing.
Abstract:
A printer controller for supplying dot data to a printhead in a predetermined order, the printhead comprising at least first and second printhead modules, each of which comprises a plurality of printing nozzles and being disposed adjacent each other such that a printing width of the printhead is wider than a printing width of either of the printhead modules, the printer controller being configured to order and time supply of the dot data to the printhead modules in accordance with their respective widths, such that a difference in relative widths of the printhead modules is at least partially compensated for.
Abstract:
A temperature controllable vacuum chuck includes a mounting bracket, a porous plate, a heating element, and a temperature sensor. The porous plate is mounted to the mounting bracket and is configured for securing a substrate to the vacuum chuck when air is suctioned out of the vacuum chuck. The heating element is attached to the bottom of the porous plate and uniformly heats the porous plate, thereby heating any substrate mounted on the vacuum chuck and enabling control over the cure rate of fluid materials deposited on the substrate. The temperature sensor measures the temperature of the porous plate so that it can be adjusted when desired with a user controllable temperature control component.
Abstract:
A microdeposition apparatus and method according to the invention deposits a fluid manufacturing material on a substrate to form microstructures. The apparatus includes a microdeposition head mounted on a head support and held above a substrate, which is mounted on a stage in controlled alignment with the microdeposition head. A control system moves the stage, and thus the substrate, while the fluid manufacturing materials is discharged from the microdeposition head. A diagnostics assembly ensures the nozzles of the microdeposition head are firing correctly. A maintenance station cleans the nozzles of the microdeposition head when needed. A capping station and a docking station hold the microdeposition head during periods of nonuse. A mounting bracket and computer system enable various microdeposition heads to be interchangeably used with the microdeposition apparatus.
Abstract:
A method and system for compensating for swath skew with respect to a perpendicular direction of carrier travel. An amount of swath skew is determined, and gross and/or fine skew adjustments are applied to reduce the swath skew to visually imperceptible limits. The method and system according to this invention can be carried out through software and/or hardware and thus eliminates the need for mechanical adjustment of an ink jet printer. The method and system operates by determining appropriate gross and fine skew adjustments upon insertion of a new printhead into a carrier. The fire order sequence of the fire groups (22, 24, 26) in the printhead can be altered, and the swath data adjusted to compensate for swath skew caused by nozzle plate (20) and/or printer skew with respect to the perpendicular direction of carrier travel.
Abstract:
A printing system capable of accurately positioning a lenticular array in registration with a rectilinear raster includes a printer that is capable of printing onto a printable surface. The printer has a main support surface on which the printable surface rests. The system further includes a series of raised parallel relief features being spatially formed along a printable substrate that is supported by the main support surface. The raised parallel relief features are raised to a sufficient height above the printable substrate such that when the lenticular array is disposed upon the raised parallel relief features, each raised parallel relief feature fits and is disposed within a valley formed between two respective adjoining lenticules of the lenticular array.