Abstract:
The present invention relates to the engineering and expression of heterologous cellulosomes in microorganisms in order to facilitate the conversion of biomass to useful products. In some embodiments, the invention relates to the expression of scaffoldin proteins which form the nucleus of a cellulosome. Cellulases or other biomass-degrading enzymes can be non-covalently linked to the scaffoldin protein by virtue of a dockerin domain-cohesin domain interaction.
Abstract:
Host cells, comprising Kluveryomyces expressing heterologous cellulases produce ethanol from cellulose In addition, multiple host cells expressing different heterlogous cellulases can be co-cultured together and used to produce ethanol from cellulose The recombinant yeast strains and co-cultures of the yeast strains can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of sacchanfication and fermentation processes
Abstract:
The present invention is directed to cellulytic host cells. The host cells of the invention expressing heterologous cellulases and are able to produce ethanol from cellulose. According to the invention, host cells expressing a combination of heterologous cellulases can be used to produce ethanol from cellulose. In addition, multiple host cells expressing different heterlogous cellulases can be co-cultured together and used to produce ethanol from cellulose. Furthemore, the invention demonstrates for the first time the ability of Kluveryomyces to produce ethanol from cellulose. The yeast strains and co-cultures of yeast strains of the invention can be used to produce ethanol on their own, or can also be used in combination with externally added cellulases to increase the efficiency of saccharification and fermentation processes.
Abstract:
The present invention relates to methods for improving a host cell's ability to utilize the disaccharide cellobiose. In some embodiments, a transformed cell expresses intracellular ß- glucosidase. In other embodiments, a transformed host cell is able to grow on media wherein cellobiose is the sole carbon source. In other embodiments, selection methods are provided which improve a host cell's ability to grow on cellobiose-containing media.
Abstract:
The present invention relates to the engineering and expression of heterologous cellulosomes in microorganisms in order to facilitate the conversion of biomass to useful products. In some embodiments, the invention relates to the expression of scaffoldin proteins which form the nucleus of a cellulosome. Cellulases or other biomass-degrading enzymes can be non-covalently linked to the scaffoldin protein by virtue of a dockerin domain-cohesin domain interaction.
Abstract:
The present invention relates to methods for improving a host cell's ability to utilize the disaccharide cellobiose. In some embodiments, a transformed cell expresses intracellular β- glucosidase. In other embodiments, a transformed host cell is able to grow on media wherein cellobiose is the sole carbon source. In other embodiments, selection methods are provided which improve a host cell's ability to grow on cellobiose-containing media.