Abstract:
A wireless device may perform a local authentication to reduce the traffic on a network. The local authentication may be performed using a local web server and/or a local OpenID provider (OP) associated with the wireless device. The local web server and/or local OP may be implemented on a security module, such as a smartcard or a trusted execution environment for example. The local OP and/or local web server may be used to implement a provisioning phase to derive a session key, associated with a service provider, from an authentication between the wireless device and the network. The session key may be reusable for subsequent local authentications to locally authenticate a user of the wireless device to the service provider.
Abstract:
Integrity validation of a network device may be performed. A network device comprising a secure hardware module, may receive a root key. The secure hardware module may also receive a first code measurement. The secure hardware module may provide a first key based on the root key and the first code measurement. The secure hardware module may receive a second code measurement and provide a second key based on the first key and the second code measurement. The release of keys based on code measurements may provide authentication in stages.
Abstract:
Systems, methods, and apparatus are provided for generating verification data that may be used for validation of a wireless transmit-receive unit (WTRU). The verification data may be generated using a tree structure having protected registers, represented as root nodes, and component measurements, represented as leaf nodes. The verification data may be used to validate the WTRU. The validation may be performed using split-validation, which is a form of validation described that distributes validation tasks between two or more network entities. Subtree certification is also described, wherein a subtree of the tree structure may be certified by a third party.
Abstract:
Methods, components and apparatus for implementing platform validation and management (PVM) are disclosed. PVM provides the functionality and operations of a platform validation entity with remote management of devices by device management components and systems such as a home node-B management system or component. Example PVM operations bring devices into a secure target state before allowing connectivity and access to a core network.
Abstract:
A device may include a trusted component. The trusted component may be verified by a trusted third party and may have a certificate of verification stored therein based on the verification by the trusted third party. The trusted component may include a root of trust that may provide secure code and data storage and secure application execution. The root of trust may also be configured to verify an integrity of the trusted component via a secure boot and to prevent access to the certain information in the device if the integrity of the trusted component may not be verified.
Abstract:
Methods, components and apparatus for implementing platform validation and management (PVM) are disclosed. PVM provides the functionality and operations of a platform validation entity with remote management of devices by device management components and systems such as a home node-B management system or component. Example PVM operations bring devices into a secure target state before allowing connectivity and access to a core network.
Abstract:
A method and apparatus are disclosed for performing secure remote subscription management. Secure remote subscription management may include providing the Wireless Transmit/Receive Unit (WTRU) with a connectivity identifier, such as a Provisional Connectivity Identifier (PCID), which may be used to establish an initial network connection to an Initial Connectivity Operator (ICO) for initial secure remote registration, provisioning, and activation. A connection to the ICO may be used to remotely provision the WTRU with credentials associated with the Selected Home Operator (SHO). A credential, such as a cryptographic keyset, which may be included in the Trusted Physical Unit (TPU), may be allocated to the SHO and may be activated. The WTRU may establish a network connection to the SHO and may receive services using the remotely managed credentials. Secure remote subscription management may be repeated to associate the WTRU with another SHO.
Abstract:
A wireless communication device is configured as an in-home node-B (H(e)NB). The H(e)NB is configured to perform a locking function to control modification of carrier and user controlled parameters, and also configured to detect a change in location.
Abstract:
A method and apparatus are described for maintaining communications connectivity for client applications that send keep-alive messages and network applications that send client-alive (i.e., "are you there?") messages. The client applications may register with a client proxy provided in an operating system (OS) of a wireless transmit/receive unit (WTRU) and indicate a respective keep-alive message signaling rate. The network applications may register with a network proxy provided in an OS of a network node and indicate a respective client-alive message signaling rate. The client proxy and/or the network proxy may, respectively, register and prioritize keep-alive and/or client-alive message requirements, determine an optimal signaling rate based on the respective keep-alive and/or client-alive message signaling rates, and generate proxy messages, (i.e., an application layer proxy keep-alive message and/or a network layer proxy client-alive message), associated with the keep-alive and/or client-alive messages. The proxy messages may be transmitted at the optimal signaling rate.
Abstract:
Secure communications may be established amongst network entities for performing authentication and/or verification of the network entities. For example, a user equipment (UE) may establish a secure channel with an identity provider, capable of issuing user identities for authentication of the user/UE. The UE may also establish a secure channel with a service provider, capable of providing services to the UE via a network. The identity provider may even establish a secure channel with the service provider for performing secure communications. The establishment of each of these secure channels may enable each network entity to authenticate to the other network entities. The secure channels may also enable the UE to verify that the service provider with which it has established the secure channel is an intended service provider for accessing services.