Abstract:
Compounds useful as fluorescent or colored dyes are disclosed. The compounds have the following structure (I): Formula (I), including stereoisomers, salts and tautomers thereof, wherein R1a, R1b, R2a, R2b, R2c, R2d, R2e, R2f, R2g, R2h, R2i, R2j, R2k, R2l, R2m, R2n, R2o, R2p, R2q, R2r and R2s are as defined herein. Methods associated with preparation and use of such compounds are also provided.
Abstract:
A wearable sensor device, system and method are provided for monitoring the attention, workload or other physical status of the wearer of the wearable sensor device. At least one biometric index value is formulated for a characteristic status from the processed sensor data of the sensors of the device and the biometric index value may also incorporate prior test data and questionnaire response information in the calculated value. The system may include any number of wearable devices that have sensors, a processor and a communications link as well as a remote computer and a non-wearable device with an interface. The status of the wearer of a wearable sensor device can be monitored with the simple display of the biometric index value as well as the data from the individual sensors.
Abstract:
Smart wearable devices and methods are disclosed for providing feedback for optimal placement of the wearable device. This includes systems and methods to lock or unlock a wearable device and/or notify external wearable/non-wearable devices depending on the states of the wearer by sending notification or providing feedback if mispositioned or repositioned on the wearer. A system and method are disclosed for providing a user indication of proper placement of a wearable device by providing feedback based on acquired bio-signal quality. In one embodiment, bio-signal quality is acquired by comparing a computed signal to noise ratio to that of an expected signal.
Abstract:
Networked smart wearable devices and methods for dynamic power management of multiple wearable devices and the optimization of the network sensor data load through network control of the sensors in each wearable device is provided.
Abstract:
Adjusting overlay positioning in stereoscopic video, including: receiving overlay data including a plurality of overlays, each overlay having a lateral axis value, a vertical axis value, and a depth value; receiving and displaying the stereoscopic video to a user as at least one of a video preview display and a stereoscopic display, each display including an overlay from the overlay data, wherein a position of the overlay in each display is based on the lateral axis value, the vertical axis value, and the depth value of the overlay, and wherein the video preview display includes interfaces for adjusting the position of the overlay in each display; receiving input from the user related to the depth value of the overlay; and adjusting the position of the overlay in the video preview display based on the input from the user.
Abstract:
Embodiments of the present disclosure generally include a method and apparatus for performing cytometry. Specifically, embodiments of the invention comprise apparatus for providing a sample fluid to a cytometry system comprising a cytometry chip and a holder. The cytometry chip is for channeling a sample fluid from a sample fluid port to an output channel. The holder is configured to retain the cytometry chip within the holder. The holder comprises an interface between the cytometry chip and at least one of a source of the sample fluid, a source of a sheath fluid or a source of electric charge. Embodiments of a method comprise using the apparatus to provide a sample fluid to a cytometry system.
Abstract:
The present disclosure is generally directed to systems for the storage and preservation of an original tissue or cell sample onboard a microfluidic device, such as a cytometry chip. In some embodiments, the sample may be disassociated while onboard the microfluidic device.
Abstract:
Particular embodiments generally relate to using a single library that allows users to view media content located on a plurality of devices. In one embodiment, an interface allows a user to view content stored on multiple devices. Information may be received for a plurality of content stored on a plurality of devices. The information may be metadata that is stored in a library. The information may be used to display an interface that shows various content. The information displayed in the interface is agnostic of where the content may be stored on devices. For example, a unified interface is provided that allows users to view content in a manner that does not take the location of the content into account. In one example, a user may view all pictures that are found on the plurality of devices in a single list.
Abstract:
Authoring a Blu-ray Disc including defining interactive regions within a composition with buttons and associating a command with the button; and automatically defining non-interactive regions within the composition with buttons, wherein the non-interactive regions are not associated with any command.
Abstract:
Micro fluidic devices adapted for facilitating cytometry analysis of particles flowing therethrough The micro fluidic devices allow light collection from multiple directions, use spatial intensity modulation, have magnetic field separators, have the ability to stack, have 3-D hydrodynamic focusing, have acoustic energy couplers, have reagent delivery structures, have optical waveguides with reflective surfaces incorporated into their flow channels, have virus detecting and sorting capabilities, and they display a color change to indicate use or a result