Abstract:
The present invention discloses moulded laminated reinforced composite glass which is mechanically strong composite of high optical quality and transparency. The moulded laminated reinforced composite glass comprises 10 % to 20 % (by vol.) of glass; and 80 % to 90% (by vol.) nano composite liquid system comprising at least one resin selected from polyester and /or epoxy, at least one curing system and at least one nano particle uniformly dispersed in the resin. Another moulded composite glass comprises 10 % to 20 % (by vol.) of glass; 60 % to 80 % (by vol.) nano composite liquid system comprising at least one resin selected from polyester and /or epoxy, at least one curing agent and at least one nano particle uniformly dispersed in the resin and 5 % to 10 % (by vol.) of pre-stretched fabric embedded within the resin matrix. It also discloses a system and processes for the production of said moulded laminated reinforced composite glass.
Abstract:
The composite pultruded products either in "I" profile or "Plate" profile of higher cross sectional area where said products consisting essentially synthetic polyester felts as core impregnated with a resin system comprises of at least one resin, curing system comprising a curing agent and an accelerator, a filler, a thinner, pigment or any other additives; encapsulated between bi-directionally and / or uni-directionally oriented synthetic fabric selected from polyester, carbon, aramid, glass, basalt and mixtures thereof impregnated with said resin system are provided. In another composite pultruded products either in "I" profile or "Plate" profile of higher cross sectional area where said products consisting of plank of short fibers bagasse premixed with the said resin system as core is enclosed between the synthetic polyester felts impregnated with the resin system which is further enclosed between bi-directionally and / or uni- directionally oriented synthetic fabric selected from polyester, carbon, aramid, glass, basalt and mixtures thereof impregnated with the resin system. The system and method for the preparation of said composite pultruded products are also illustrated herein. These products lead to a significant reduction in weight and reduction in density with higher stiffness and bending strength. The present composite products are encapsulated by fabrics in the peripheral area bringing more integrity uniformity of synthetic polyester felt materials. This leads to a significant cost reduction without sacrificing much tensile strength.
Abstract:
Bio-composite pultruded products (100, 104, 107, 110, 114, 117) either in "I" profile or "Plate" profile of higher cross sectional area where said products consisting essentially natural fibres selected from hemp, jute, sisal and. flex as core impregnated with a resin system comprise of at least one resin, curing system comprising a curing agent and an accelerator, a filler, a thinner, pigment or any other additives; encapsulated between bi-directionally and / or uni-directionally oriented synthetic fabric selected from polyester, carbon, aramid, glass, basalt and mixtures thereof impregnated with said resin system are provided. in another bio-composite pultruded products either of "I" profile or "Plate" profile of higher cross sectional area where said products consisting of plank of short fibers bagasse premixed with the said resin system as core is enclosed between the natural fibers selected from hemp, jute, sisal and flex impregnated with the resin system which is further enclosed between bi-directionally and / or uni-directionally oriented synthetic fabric selected from polyester, carbon, aramid, glass, basalt and mixtures thereof impregnated with the resin system. The system and method for the preparations of said bio-composite pultruded products, are also illustrated herein. These products lead to a significant reduction in weight and reduction in density with higher stiffness and bending strength. The present bio-composite products are encapsulated by fabrics in the peripheral area brings more integrity uniformity of jute materials. This leads to a significant cost reduction in a without sacrificing much tensile strength.