Abstract:
An aeration assembly for aerating liquids including wine and other alcoholic beverages includes an expansion chamber and an aerating device. The expansion chamber is configured to be in fluid communication with an inside of the uncorked and/or opened bottle when engaged by a bottom portion of the expansion chamber. The aerating device comprises a gas conduit having a proximal end in fluid communication with a distal end. The distal end is disposable below the bottom portion of the expansion chamber. A gas source is in fluid communication with the proximal end of the gas conduit. The expansion chamber is configured to temporarily contain an expansion of bubbles during an aeration process. The expansion chamber and aerating device are not permanently connected, wherein the aerating device can be fully removed from the expansion chamber before, during or after the aeration process.
Abstract:
One or more inductors and one or more capacitors are physically disposed relative to one another in series and are electrically connected to one another in parallel to form a bandstop filter. Chip inductors and chip capacitors having spaced apart conductive terminals are physically arranged in end-to-end abutting relation to minimize electrical potential between adjacent conductive terminals. The bandstop filter may be hermetically sealed within a biocompatible container for use with an implantable lead or electrode of a medical device. The values of the inductors and the capacitors are selected such that the bandstop filter is resonant at one or more selected frequencies, such as an MRI pulsed frequency.
Abstract:
A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
Abstract:
A system is provided for identifying implanted medical devices, leads and systems, as well as objects in close proximity to a patient having an implanted active medical device, using a radio frequency identification (RFID) tag having retrievable information relating to the AIMD, lead system and/or patient. An RFID tag communicator includes a circuit for limiting the total continuous transmit time of an interrogation signal, and a time-out circuit for delaying a second and any subsequent interrogation of the RFID tag.
Abstract:
A one-piece cylindrical bandstop filter for medical lead systems incorporates parallel capacitive and inductive elements in a compact cylindrical configuration. The compact cylindrical configuration of the bandstop filter does not add significantly to the size or weight of the medical lead system. Preferably, the bandstop filters are of biocompatible materials or hermetically sealed in biocompatible containers. The parallel capacitive and inductive elements are placed in series with the medical lead system, and are selected so as to resonate at one or more selected frequencies, typically MRI pulsed frequencies.
Abstract:
A hermetic terminal for an active implantable medical device (AIMD), includes an RF distance telemetry pin antenna, a capacitor conductively coupled between the antenna and a ground for the AIMD, and an inductor electrically disposed in parallel with the capacitor and conductively coupled between the antenna and a ground for the AIMD. The capacitor and the inductor form a band pass filter for attenuating electromagnetic signals through the antenna except at a selected frequency band. Values of capacitance and inductance are selected such that the band pass filter is resonant at the selected frequency band.
Abstract:
A band stop filter is provided for a lead wire of an active medical device (AMD). The band stop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the band stop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the band stop filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the band stop filter is integrated into a TIP and/or RING electrode for an active implantable medical device.
Abstract:
A feedthrough terminal assembly for an active implantable medical device (AIMD) includes a conductive terminal pin or lead wire which extends through a conductive ground plane of the AIMD in non-conductive relation. A feedthrough capacitor associated with the terminal pin or lead wire has first and second sets of electrode plates coupled, respectively, to the conductive pin or lead wire and to the ground plane. A breathable electromechanical connection material conductively couples the capacitor's electrode plates to respective components of the AIMD, which allows helium gas to pass freely therethrough during a standard pressurized or vacuum pull helium leak detection test. A breathable washer may be disposed between an alumina insulator and a surface of the capacitor. An additional further breathable coating or conformal coating may be placed over a surface of the feedthrough capacitor disposed toward the interior of the AIMD.
Abstract:
A hermetic terminal for an active implantable medical device (AIMD), includes an RF distance telemetry pin antenna, a capacitor conductively coupled between the antenna and a ground for the AIMD, and an inductor electrically disposed in parallel with the capacitor and conductively coupled between the antenna and a ground for the AIMD. The capacitor and the inductor form a band pass filter for attenuating electromagnetic signals through the antenna except at a selected frequency band. Values of capacitance and inductance are selected such that the band pass filter is resonant at the selected frequency band.
Abstract:
A TANK filter is provided for a lead wire of an active medical device (AMD). The TANK filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the lead wire of the AMD, wherein values of capacitance and inductance are selected such that the TANK filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the TANK filter to attenuate current flow through the lead wire along a range of selected frequencies. In a preferred form, the TANK filter is integrated into a TIP and/or RING electrode for an active implantable medical device.