Abstract:
There are provided curable resin sols comprising an essentially volatile-free, colloidal dispersion of substantially spherical nanosilica particles in a curable bisimide resin, said particles having surface-bonded organic groups which render said particles compatible with said curable bisimide resin. There are also provided compositions comprising such curable resin sol and reinforcing fibers, a process for preparing such compositions, and various articles made using such curable resin sols and compositions.
Abstract:
Methods of compounding nanoparticles with a resin, e.g., a curable resin and one or more surface modifying agents are described. The methods use wet milling technology, including both continuous and batch milling processes, and can be used to functionalize the nanoparticles and disperse the functionalized nanoparticles into the resin system in a single process. Methods of compounding curable resin systems containing reactive diluents are also disclosed.
Abstract:
Dispersions of nanoparticles in a resin component are described. The nanoparticles have a multimodal particle size distribution including at least a first mode and a second mode. The number average particle diameter of the particles in the first mode is greater than the number average particle size distribution in the second mode. The use of multimodal nanoparticle size distributions and the relative number of particles in the first and second mode to reduce or eliminate particle stacking behavior is also described.
Abstract:
A method of making a filled resin includes providing functionalized particles; and combining and homogenously mixing the functionalized particles with an organic matrix in a vacuum kneader to provide the filled resin so that the functionalized particles comprise at least about 20% by weight of the filled resin. The step of providing functionalized particles can also include providing a feedstock of (i) untreated particles, (ii) a surface treatment agent reactive with the particles, and (iii) solvent, and directing the feedstock through a continuous reactor maintained at a temperature sufficient to react the particles with the surface treatment agent to provide the functionalized particles in less than about 4 hours; and directing the functionalized particles from the continuous reactor directly into the vacuum kneader. In another aspect, the a finished resin comprises at least about 20% by weight of functionalized particles in an organic matrix
Abstract:
The invention relates to a dental composition comprising a) a hardenable compound (A1), b) a filler (B1), c) an initiator (C1) being able to initiate curing of compound (A1), compound (A1) having the structure A-(-S1-U-S2-MA) n , with A being a connector element, S1 being a spacergroup comprised of units connected with each other and comprising at least 4 units, S2 being a spacergroup comprised of units connected with each other and comprising at least 4 units, U being an urethane, an amide or an urea group connecting spacergroups S1 and S2, MA being an acrylate or methacrylate group and n being 3 to 6. The invention also relates to a process of producing this dental composition and using the dental composition e.g. as a temporary and/or long term crown and bridge material.
Abstract translation:本发明涉及一种牙科用组合物,其含有a)可硬化化合物(A1),b)填料(B1),c)能引发化合物(A1)固化的引发剂(C1),具有结构 A - ( - S1-U-S2-MA)n,其中A是连接器元件,S1是由彼此连接并且包括至少4个单元的单元组成的空间组,S2是由相互连接的单元组成的空间组 并且包含至少4个单元,U是连接空间群S1和S2的氨基甲酸酯,酰胺或脲基,MA是丙烯酸酯或甲基丙烯酸酯基,n是3至6.本发明还涉及制备该牙科组合物的方法 并使用牙科组合物例如 作为临时和/或长期的冠和桥材料。
Abstract:
There are provided curable resin sols having a curable polycyanate ester resin and at least 30 weight percent of an essentially volatile-free, colloidal dispersion of substantially spherical surface-modified silica nanoparticles; wherein the curable resin sol comprises no greater than 200 parts per million by weight alkali metal and alkaline earth metal ions based on the total weight of the silica nanoparticles and curable polycyanate ester resin. There are also provided compositions comprising such curable resin sol and reinforcing fibers, a process for preparing such compositions, and various articles made using such curable resin sols and compositions.
Abstract:
Methods of compounding nanoparticles with a resin, e.g., a curable resin and one or more surface modifying agents are described. The methods use wet milling technology, including both continuous and batch milling processes, and can be used to functionalize the nanoparticles and disperse the functionalized nanoparticles into the resin system in a single process. Methods of compounding curable resin systems containing reactive diluents are also disclosed.
Abstract:
Compositions comprising surface-modified nanocalcite particles dispersed in a curable resin, and to coatings and fibrous composites incorporating such compositions are described. The surface-modifying agents include a binding group ionically associated with the calcite and a compatiblizing segment, compatible with the curable resin. The surface-modifying agent may also include a reactive group capable of reacting with the curable resin. Methods of preparing nanocalcite composites and coating a fibrous composites prepared from such nanocalcite composites are also described.
Abstract:
A method for the preparation of functionalized particles includes providing a feedstock that includes particles, a surface treatment agent reactive with the particles and solvent. The feedstock is direct through a continuous hydrothermal reactor maintained at a temperature sufficient to react the particles with the surface treatment agents to thereby provide functionalized particles. The method of the invention is capable of providing the functionalized particles in less than about 4 hours.
Abstract:
Multilayer polymeric films which may be useful for protecting the leading edges of aircraft from rain and sand erosion are presented. Typical surface protection films comprising two or more layers of a first material alternating with one or more layers of a second material, wherein the first and second materials are different materials, wherein the first and second materials comprise first and second polymers, wherein the first and second materials have a first and second Shore hardness, and wherein the first Shore hardness is greater than the second Shore hardness by more than 5A or more typically more than 10A.