Abstract:
In a resistance welding method, by controlling the power amount from a melting start time onward, the weld quality may be stabilized efficiently, even when a disturbance is present, because of the correlation between the amount of power input from the melting atart time and a resulting nugget. The resistance welding method includes: pressing an electrode against a workpiece; inputting power to the workpiece through the electrode to subject the workpiece to Joule heating; detecting the melting start time, which is the time at which at least a portion of the faying portion of a workpiece starts to melt when subjected to Joule heating; calculating a first power amount input into the workpiece from the melting start time; and determining whether the first power amount has reached a first set value; and continuing the Joule heating until the first power amount reaches the first set value.
Abstract:
A metal paste for joining includes aggregates of metal nanoparticles and a solvent, and an average particle size of the aggregates is 1 μm or more.
Abstract:
A metal paste for joining includes aggregates of metal nanoparticles and a solvent, and an average particle size of the aggregates is 1 μm or more.
Abstract:
In a resistance welding method, by controlling the power amount from a melting start time onward, the weld quality may be stabilized efficiently, even when a disturbance is present, because of the correlation between the amount of power input from the melting atart time and a resulting nugget. The resistance welding method includes: pressing an electrode (11a, 11b) against a workpiece (Wa, Wb); inputting power to the workpiece (Wa, Wb) through the electrode (11a, 11b) to subject the workpiece (Wa, Wb) to Joule heating; detecting the melting start time, which is the time at which at least a portion of the faying portion of a workpiece (Wa, Wb) starts to melt when subjected to Joule heating; calculating a first power amount input into the workpiece (Wa, Wb) from the melting start time; and determining whether the first power amount has reached a first set value; and continuing the Joule heating until the first power amount reaches the first set value.
Abstract:
This invention aims to provide a resistance welding method capable of stabilizing quality or improving efficiency of resistance welding such as spot welding. This resistance welding method comprises a calculating step of calculating resistance ratio X of a second electric resistance value R2 of workpieces to be joined in residual heat after Joule heating stops to a first electric resistance value R1 of the workpieces immediately before the Joule heating stops or vice versa (R2/R1 or R1/R2); a determining step of determining whether the resistance ratio X is equal to or greater than a threshold value Xn, and a reheating step of carrying out the Joule heating again when the resistance ratio X is smaller than the threshold value Xn. Thereby at least part of a welding portion is melted and solidified to reliably form a nugget, and a stably resistance-welded member can be provided.