Abstract:
A photonic device is described that contains patterns on the backside of a transparent substrate that perform several functions, including anti-reflection coating in certain areas but not in other areas, light blocking in certain areas and not in others. The patterned layers provide improved product performance and improved radiation tolerance.
Abstract:
A system for creating an optical time domain reflectometer (OTDR) in a small package is described. This system allows the implementation of multiple channels of OTDR in package of similar size to existing fiber optic transceivers.
Abstract:
An optical time domain reflectometer (OTDR) system with an integrated high speed optical modulator is capable of operating at a speed similar to the OTDR pulse width to improve the measurement resolution and reduce the time required to acquire a high dynamic range OTDR measurement over existing approaches. ASICs can be used to control the modulator and generation of pulses. The high-speed optical modulator enables high resolution single-photon OTDR measurement by blocking out all return light except from the region of fiber under examination.
Abstract:
A fiber optic transceiver that is compatible with packaging into standard semiconductor packages and for SMT packaging, using materials and fabrication procedures that withstand solder assembly processes. The SMT package can have electrical contacts on the exterior of the package for creating electrical conduits to a substrate, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver can be of a non-SMT package configuration, being formed with electrical connection technology that allows direct connection to a substrate with electrical wiring, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver may have solderballs, metal posts or other electrical conduit technology that allows direct electrical connection to the substrate.
Abstract:
A device structure and system for connecting optical waveguides to optical transmit and receive components is described. The structure is made of two parts. The lower part contains active optoelectronic components, such as lasers and photodetectors, and optical lenses. The lower part can be assembled by steps of aligning and bonding planar components. The upper part contains optical waveguides and lenses for coupling light into and out of the waveguides. The top part is mechanically connected to the lower part to form a mechanically sound connection. The lens system provides some tolerance to mis-alignment between the top and bottom parts. The system has features that enable fiber optic components to operate and survive in harsh environments, particularly large temperature extremes.
Abstract:
An optical time domain reflectometry system is described which provides low-power, low weight, optical fiber system integrity measurements in an in-situ optical fiber system. The system can be integrated within the transmitter component to allow both data transmission and OTDR measurement functions. A method of providing several different modes of OTDR measurement through external control is also disclosed.
Abstract:
A system for creating an optical time domain reflectometer (OTDR) in a small package is described. This system allows the implementation of multiple channels of OTDR in package of similar size to existing fiber optic transceivers.
Abstract:
Systems and methods are described for creating a very cost effective optical/electrical interface connecting system with high tolerance to misalignment. Low cost sealed optical devices can be fabricated with easily detachable top cable assemblies. This approach can be used for hermetically sealed optical devices without the need for hermetic fiber feed-through. The system also has features that enable fiber optic components to operate and survive in harsh environments, particularly in large temperature extremes.