Abstract:
A stand for supporting a pressure vessel includes a support body having an upper wall and a sidewall extending downwardly from the upper wall. A locking aperture is defined in the upper wall to permit passage of pressure vessel components therethrough. A plurality of locking latches is disposed along an inner dimension of the locking aperture. The locking latches are configured and adapted to couple with a pressure vessel retaining ring passing through the locking aperture.
Abstract:
Disclosed is a device for causing turbulent flow in a tank assembly that includes, inter alia, a base portion and a vane element that extends in an axial direction from the base portion. The vane element has a curved surface formed at a distal end thereof which is adapted and configured to redirect fluid traversing the device axially in a non-axial direction. Still further, a plurality of shoulder elements extend radially outward from the axis of the vane element and are adapted and configured for limiting that axial insertion of the device into a fitting associated with the tank assembly. In an embodiment of the present invention, the vane element includes lateral edges which are adapted and configured for press-fit engagement with an inside diameter of the fitting associate with the tank assembly.
Abstract:
A stand for supporting a pressure vessel includes a support body having an upper wall and a sidewall extending downwardly from the upper wall. A locking aperture is defined in the upper wall to permit passage of pressure vessel components therethrough. A plurality of locking latches is disposed along an inner dimension of the locking aperture. The locking latches are configured and adapted to couple with a pressure vessel retaining ring passing through the locking aperture.
Abstract:
Disclosed is a device for causing turbulent flow in a tank assembly that includes, inter alia , a base portion and a vane element that extends in an axial direction from the base portion. The vane element has a curved surface formed at a distal end thereof which is adapted and configured to redirect fluid traversing the device axially in a non-axial direction. Still further, a plurality of shoulder elements extend radially outward from the axis of the vane element and are adapted and configured for limiting that axial insertion of the device into a fitting associated with the tank assembly. In an embodiment of the present invention, the vane element includes lateral edges which are adapted and configured for press-fit engagement with an inside diameter of the fitting associate with the tank assembly.