Abstract:
A method for making a semiconductor device includes patterning a semiconductor layer (14), overlying an insulator layer (12), to create a first active region (28) and a second active region (30), wherein the first active region is of a different height from the second active region, and wherein at least a portion of the first active region has a first conductivity type and at least a portion of the second active region has a second conductivity type different from the first conductivity type in at least a channel region of the semiconductor device. The method further includes forming a gate structure (26) over at least a portion of the first active region and the second active region. The method further includes removing a portion of the second active region on one side of the semiconductor device.
Abstract:
A method for forming a silicon-on-insulator transistor (80) includes forming an active region (82) overlying an insulating layer (122), wherein a portion of the active region provides an intrinsic body region (126). A body tie access region (128) is also formed within the active region, overlying the insulating layer and laterally disposed adjacent the intrinsic body region, making electrical contact to the intrinsic body region. A gate electrode (134) is formed overlying the intrinsic body region for providing electrical control of the intrinsic body region, the gate electrode extending over a portion (137) of the body tie access region. The gate electrode is formed having a substantially constant gate length (88) along its entire width overlying the intrinsic body region and the body tie access region to minimize parasitic capacitance and gate electrode leakage. First and second current electrodes (98,100) are formed adjacent opposite sides of the intrinsic body region. In addition, a body tie diffusion (130) is formed within the active region and laterally offset from the body tie access region and electrically coupled to the body tie access region.
Abstract:
A method for forming a silicon-on-insulator transistor (80) includes forming an active region (82) overlying an insulating layer (122), wherein a portion of the active region provides an intrinsic body region (126). A body tie access region (128) is also formed within the active region, overlying the insulating layer and laterally disposed adjacent the intrinsic body region, making electrical contact to the intrinsic body region. A gate electrode (134) is formed overlying the intrinsic body region for providing electrical control of the intrinsic body region, the gate electrode extending over a portion (137) of the body tie access region. The gate electrode is formed having a substantially constant gate length (88) along its entire width overlying the intrinsic body region and the body tie access region to minimize parasitic capacitance and gate electrode leakage. First and second current electrodes (98,100) are formed adjacent opposite sides of the intrinsic body region. In addition, a body tie diffusion (130) is formed within the active region and laterally offset from the body tie access region and electrically coupled to the body tie access region.
Abstract:
A method for making a semiconductor device includes patterning a semiconductor layer (14), overlying an insulator layer (12), to create a first active region (28) and a second active region (30), wherein the first active region is of a different height from the second active region, and wherein at least a portion of the first active region has a first conductivity type and at least a portion of the second active region has a second conductivity type different from the first conductivity type in at least a channel region of the semiconductor device. The method further includes forming a gate structure (26) over at least a portion of the first active region and the second active region. The method further includes removing a portion of the second active region on one side of the semiconductor device.