Abstract:
Assays can be used to detect mutations found in neoplasms of the pancreas, as well as for other neoplasms and other uses. Nucleic acids can be captured from body fluids such as cyst fluids. Thousands of oligonucleotides can be synthesized in parallel, amplified and ligated together. The ligated products can be further amplified. The amplified, ligated products are used to capture complementary DNA sequences, which can be analyzed, for example by massively parallel sequencing.
Abstract:
Altered protein products resulting from somatic mutations are directly identified and quantified by mass spectrometry. The peptides expressed from normal and mutant alleles are detected by Selected Reaction Monitoring (SRM) of their product ions using a triple quadrupole mass spectrometer. As a prototypical example of this approach, we quantify the number and fraction of mutant Ras protein present in cancer cell lines. There were an average of 1.3 million molecules of Ras protein per cell and the ratio of mutant to normal Ras proteins ranged from 0.49 to 5.6. Similarly, we detected and quantified mutant Ras proteins in clinical specimens such as colorectal and pancreatic tumor tissues as well as in pre-malignant pancreatic cyst fluids. These methods are useful for diagnostic applications.
Abstract:
Pancreatic Neuroendocrine Tumors (PanNETs) are a rare but clinically important form of pancreatic neoplasia. To explore the genetic basis of PanNETs, we determined the exomic sequences of ten non-familial PanNETs and then screened the most commonly mutated genes in 58 additional PanNETs. Remarkably, the most frequently mutated genes specify proteins implicated in chromatin remodeling: 44% of the tumors had somatic inactivating mutations in MEN-1, which encodes menin, a component of a histone methyltransferase complex; and 43% had mutations in genes encoding either of the two subunits of a transcription/chromatin remodeling complex consisting of DAXX (death-domain associated protein) and ATRX (alpha thalassemia/mental retardation syndrome X-linked). Clinically, mutations in the MEN1 and DAXX/ATRX genes were associated with better prognosis. We also found mutations in genes in the mTOR (mammalian target of rapamycin) pathway in 14% of the tumors, a finding that could potentially be used to stratify patients for treatment with mTOR inhibitors.
Abstract:
Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high density microarrays and sequenced all known protein-coding genes and miRNA genes using Sanger sequencing. We found that, on average, each tumor had 11 gene alterations, markedly fewer than in common adult cancers. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone H3K4 trimethylase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.
Abstract:
Several agents capable of inducing vascular responses akin to those observed in inflammatory processes enhance the accumulation of nanoparticles in tumors. Exemplary vascular-active agents include a bacterium, a pro-inflammatory cytokine, and microtubule-destabilizing drugs. Such agents can increase the tumor to blood ratio of radioactivity by more than 20-fold compared to nanoparticles alone. Moreover, vascular-active agents dramatically improved the therapeutic effect of nanoparticles containing radioactive isotopes or chemotherapeutic agents.
Abstract:
Abnormal DNA methylation can be used as a biomarker in cancer patients. For such purposes, it is important to determine precisely the fraction of methylated molecules in an analyzed sample. A technology we term Methyl-BEAMing achieves this goal. Individual bisulfite-treated DNA molecules can be PCR-amplified within aqueous nanocompartments containing beads, resulting in a population of beads each containing thousands of copies of the template molecule. After hybridization with probes specific for methylated sequences, the beads can be analyzed by flow cytometry. This approach enables detection and enumeration of one methylated molecule in a population of ~5000 unmethylated molecules. Methyl-BEAMing provides digital quantification of rare methylation events and is generally applicable to the assessment of methylated genes in clinical samples.
Abstract:
Transcription in mammalian cells can be assessed at a genome-wide level, but it has been difficult to reliably determine whether individual transcripts are derived from the Plus- or Minus-strands of chromosomes. This distinction can be critical for understanding the relationship between known transcripts (sense) and the complementary antisense transcripts that may regulate them. Here we describe a technique that can be used to (i) identify the DNA strand of origin for any particular RNA transcript and (ii) quantify the number of sense and antisense transcripts from expressed genes at a global level. We examined five different human cell types and in each case found evidence for antisense transcripts in 2900 to 6400 human genes. The distribution of antisense transcripts was distinct from that of sense transcripts, was non-random across the genome, and differed among cell types. Antisense transcripts thus appear to be a pervasive feature of human cells, suggesting that they are a fundamental component of gene regulation.
Abstract:
We found mutations of the R132 residue of isocitrate dehydrogenase 1 (IDH1) in the majority of grade II and III astrocytomas and oligodendrogliomas as well as in glioblastomas that develop from these lower grade lesions. Those tumors without mutations in IDH1 often had mutations at the analogous R172 residue of the closely related IDH2 gene. These findings have important implications for the pathogenesis and diagnosis of malignant gliomas.
Abstract:
MicroRNAs (miRNAs) are a class of small noncoding RNAs that have important regulatory roles in multicellular organisms. The public miRNA database contains 321 human miRNA sequences, 234 of which have been experimentally verified. To explore the possibility that additional miRNAs are present in the human genome, we have developed an experimental approach called miRNA serial analysis of gene expression (miRAGE) and used it to perform the largest experimental analysis of human miRNAs to date. Sequence analysis of 273,966 small RNA tags from human colorectal cells allowed us to identify 200 known mature miRNAs, 133 novel miRNA candidates, and 112 previously uncharacterized miRNA* forms. To aid in the evaluation of candidate miRNAs, we disrupted the Dicer locus in three human colorectal cancer cell lines and examined known and novel miRNAs in these cells. The miRNAs are useful to diagnose and treat cancers.
Abstract:
Clostridium novyi is an obligate anaerobe that can infect hypoxic regions within experimental tumors. We found that mice bearing large, established tumors were often cured when treated with C. novyi plus a single dose of liposomal doxorubicin. The secreted factor responsible for this phenomenon was identified and, surprisingly, proved to be a member of the lipase family. The gene encoding this protein, called liposomase, has the potential to be incorporated into diverse therapeutic methods to deliver specifically a variety of chemotherapeutic agents to tumors.