Abstract:
The present invention is directed to a condensed phase batch process for synthesis of trisilylamine (TSA). An improved synthesis method that incorporates a solvent to help promote a condensed-phase reaction between ammonia gas (or liquid) and liquified monochlorosilane (MCS) in good yields is described. This method facilitates the removal of the byproduct waste with little to no reactor down time, substantial reduction of down-stream solids contamination and high-purity product from first-pass distillation.
Abstract:
A method for making a higher silane from a lower silane comprises heating a lower silane containing stream without exposing it to temperatures more than 2O°C more than the maximum temperature of a first reaction temperature range. The heated lower silane containing stream is introduced into a first reaction zone and allowed to react. Unreacted lower silanes are recycled to the earlier heating step. Preferably the average residence time is low to prevent decomposition and formation of undesired silane byproducts. A method for making a higher than higher silane from a lower silane comprises mixing a first gaseous mixture from the first reaction zone with a higher silane containing stream and introducing the mixed streams into a second reaction zone operating within a second reaction temperature range. A second gaseous mixture exiting the second reaction zone is separated into various streams. One stream containing unreacted lower silanes is recycled to an earlier heating step and first reaction zone. Another stream, the higher silane containing stream is mixed with the first gaseous mixture.
Abstract:
The present invention is directed to a condensed phase batch process for synthesis of trisilylamine (TSA). An improved synthesis method that incorporates a solvent to help promote a condensed-phase reaction between ammonia gas (or liquid) and liquified monochlorosilane (MCS) in good yields is described. This method facilitates the removal of the byproduct waste with little to no reactor down time, substantial reduction of down-stream solids contamination and high-purity product from first-pass distillation.
Abstract:
A process and system for the purification of germane containing phosphine to provide a purified germane product. One aspect of the present invention is a process for making a purified germane product containing less than 50 ppb of phosphine which comprises providing a phosphine contaminated germane gas hydrogen gas mixture; passing the germane gas hydrogen gas mixture through an adsorbent which selectively adsorbs phosphine and withdrawing therefrom a purified germane gas hydrogen mixture; and separating the purified germane gas from the hydrogen germane gas mixture.
Abstract:
A method for making a higher silane from a lower silane comprises heating a lower silane containing stream without exposing it to temperatures more than 2O°C more than the maximum temperature of a first reaction temperature range. The heated lower silane containing stream is introduced into a first reaction zone and allowed to react. Unreacted lower silanes are recycled to the earlier heating step. Preferably the average residence time is low to prevent decomposition and formation of undesired silane byproducts. A method for making a higher than higher silane from a lower silane comprises mixing a first gaseous mixture from the first reaction zone with a higher silane containing stream and introducing the mixed streams into a second reaction zone operating within a second reaction temperature range. A second gaseous mixture exiting the second reaction zone is separated into various streams. One stream containing unreacted lower silanes is recycled to an earlier heating step and first reaction zone. Another stream, the higher silane containing stream is mixed with the first gaseous mixture.