Abstract:
Stabilizing a subterranean formation containing water-sensitive clays with methods including introducing a leading-edge fluid comprising a first base fluid and a first clay stabilizer solution wherein the first clay stabilizer is present in the first base fluid at a first concentration; and then introducing a treatment fluid comprising a second base fluid and a second clay stabilizer solution wherein the second clay stabilizer is present in the second base fluid at a second concentration, wherein the first concentration of clay stabilizer solution is higher than the second concentration of clay stabilizer solution.
Abstract:
Of the many methods provided herein, one method comprises: providing at least one fracture in a subterranean formation that comprises tight gas, a shale, a clay, and/or a coal bed; providing a plasticity modification fluid that comprises an aqueous fluid and an alkaline embrittlement modification agent; placing the plasticity modification fluid into the fracture in the subterranean formation; and embrittling at least one fracture face of the fracture to form an embrittled fracture face.
Abstract:
A method is provided for swelling hydrocarbon-swellable elements located in a portion of a well. The method comprises the steps of: (A) introducing a water-in-oil emulsion into the portion of the well, wherein the water-in-oil emulsion comprises: (i) a hydrocarbon liquid, wherein the hydrocarbon liquid is the external phase of the water-in-oil emulsion; (ii) an aqueous liquid, wherein the aqueous liquid is an internal phase of the water-in-oil emulsion and wherein the aqueous liquid is adjacent to the external phase of the water-in-oil emulsion; and (iii) a surfactant; and (B) allowing the water-in-oil emulsion to contact the hydrocarbon- swellable element for a sufficient length of time to cause the thickness of the hydrocarbon- swellable element to expand by a desired percentage, wherein the desired percentage is at least 5%.
Abstract:
Treatments and compounds useful in subterranean formations are discussed, with particular attention to fracturing treatments where particulates and/or surfaces may be subject to water intrusion. Certain methods pertain to utilizing diagenesis source material to create porous structures in a subterranean formation. Such porous structures may be formed of consolidated particulates and/or diagenic product. Certain methods pertain to analyzing and/or quantifying the effects of the other methods disclosed herein.
Abstract:
A method of enhancing hydration of a hydratable material is described, including providing an aqueous composition including a hydratable material, and supplying energy to the aqueous composition using a cavitation device.
Abstract:
Methods comprising: providing at least a plurality of liquid hardenable resin coated particulates that have been at least partially coated with a liquid hardenable resin component; providing at least a plurality of liquid hardening agent coated particulates that have been at least partially coated with a liquid hardening agent component; suspending the liquid hardenable resin coated particulates and the liquid hardening agent coated particulates in a treatment fluid; and placing the treatment fluid into a subterranean formation.
Abstract:
The present invention relates to methods for controlling the migration of particulates, such as proppant and formation sands, from subterranean formations using solutions of tackifying materials. One embodiment of the present invention provides a method of treating a subterranean formation comprising the steps of placing a tackifying composition into the subterranean formation and then placing an after-flush fluid into the subterranean formation.
Abstract:
A method of treating a subterranean formation is disclosed, wherein the method comprises providing a treatment fluid comprising: an aqueous fluid; a gelling agent, and a multifunctional boronic crosslinker comprising two or more boronic functional groups; and introducing the treatment fluid into a subterranean formation. A composition, comprising an aqueous fluid; a gelling agent; and a multifunctional boronic crosslinker comprising two or more boronic functional groups is also disclosed.
Abstract:
A method comprises providing a treatment fluid comprising an aqueous fluid, and a low-leakoff particulate, contacting a subterranean formation with the treatment fluid, and allowing the low-leakoff particulate to de-link so that at least a portion of the low-leakoff particulate enters the liquid phase.
Abstract:
A method is provided for swelling water-swellable elements located in a portion of a well. The method comprises the steps of: (A) introducing an oil-in-water emulsion into the portion of the well, wherein the oil-in-water emulsion comprises: (i) an aqueous liquid, wherein the aqueous liquid is the external phase of the oil-in-water emulsion; (ii) a hydrocarbon liquid, wherein the hydrocarbon liquid is an internal phase of the oil-in-water emulsion, and wherein the hydrocarbon liquid is adjacent to the external phase of the oil-in-water emulsion; and (iii) a surfactant; and (B) allowing the oil-in-water emulsion to contact the water-swellable element for a sufficient length of time to cause the thickness of the water-swellable element to expand by a desired percentage, wherein the desired percentage is at least 5%.