摘要:
Light-emitting devices having an emitting layer containing a light-emitting organic or organometallic material and a nanostructure, the nanostructure having strong local electric fields at visible electromagnetic wavelengths that spectrally and spatially overlap with the light-emitting material. The spectral and spatial overlap of the electric fields of the nanostructure with the light emitting material uses high LDOS provided by the nanostructures to enable excited triplet electronic states in the material to emit light faster than without the nanostructure. This faster light emission from triplet-excited states leads to more stable emission from the light emitting material because it prevents buildup of triplet-excited states, which ordinarily can lead to quenching of light emission from the light emitting material. Among the many different possibilities contemplated, the nanostructure may advantageously be made of a dielectric material or a plasmonic metal material, such as SiO 2 , TiO 2 , ZnO, Al or Ag. It is further contemplated that the light-emitting material be capable of exhibiting at least one of phosphorescence or thermally-assisted delayed fluorescence. Many light- emitting materials, including blue light emitters, may be utilized, and may also be doped into a host material. It is still further contemplated that the nanostructure may be a nanoparticle, such as a sphere or rod, or a metasurface composed of a 2D periodic or aperiodic array of nanostructures, and the nanostructure may be on either side of the light-emitting material, or may be surrounded by or embedded in the host material. The light-emitting device may also advantageously include other layers, including but not limited a hole transport layer, a hole blocking layer, an electron transport layer, a hole injection layer, or an electron injection layer. Further, the device may also be configured for use in various applications, including but not limited to bioimaging, photochemistry, and single molecule spectroscopy.
摘要:
A light-emitting element with high emission efficiency. The light-emitting element includes a first organic compound, a second organic compound, and a guest material. The LUMO level of the first organic compound is lower than the LUMO level of the second organic compound. The HOMO level of the first organic compound is lower than the HOMO level of the second organic compound. The HOMO level of the guest material is higher than the HOMO level of the second organic compound. The energy difference between the LUMO level of the guest material and the HOMO level of the guest material is larger than the energy difference between the LUMO level of the first organic compound and the HOMO level of the second organic compound. The guest material has a function of converting triplet excitation energy into light emission. The first organic compound and the second organic compound form an exciplex.
摘要:
Eine organische Emitterschicht (100) weist organische Emittermoleküle (1) auf mit jeweils zumindest einem angeregten Triplett- (S E1 ) und zumindest einem angeregten Singulett-Zustand (T E1 ). Die Emitterschicht (100) umfasst ein organisches Matrixmaterial (10) mit ersten Matrixmolekülen (2), wobei die ersten Matrixmoleküle (2) zumindest einen angeregten Triplett-Zustand (T A1 ) und zumindest einen angeregten Singulett-Zustand (S A1 ) aufweisen. Die Emittermoleküle (1) sind in dem Matrixmaterial eingebettet (10). Im Betrieb der Emitterschicht (100) werden die Triplett-Zustände und Singulett-Zustände der ersten Matrixmoleküle (2) angeregt, die Anregungsenergie wird anschließend auf die Emittermoleküle übertragen, sodass dort die Singulett-Zustände angeregt werden. Von den Singulett-Zuständen der Emittermoleküle (1) aus findet ein Übergang in den Grundzustand (S E0 ) unter zumindest teilweiser Aussendung elektromagnetischer Strahlung statt. In den ersten Matrixmolekülen ist der Betrag der Energieniveaudifferenz I ΔΕ (S A1 -T A1 ) I zwischen dem Triplett-Zustand und dem Singulett-Zustand höchstens 2500 cm -1 . Eine Zeitkonstante τ A für den Übergang vom Triplett-Zustand in den Singulett-Zustand in den ersten Matrixmolekülen ist höchstens 1.10 -6 s. In das Matrixmaterial sind beabsichtigt Schweratome (3) mit einer Ordnungszahl von mindestens 16 eingebracht.
摘要:
The present invention generally relates to composition and methods for downconverting light. In some embodiments, the composition and methods comprise an organic material, a nanocrystal, and a ligand capable of facilitating energy transfer between the organic material and the nanocrystal. In certain embodiments, the nanocrystal has a first excited energy state with an energy less than a triplet energy state of the organic material. The organic material, in some embodiments, may be aromatic and/or include one or more pi-conjugated carbon-carbon double bonds. In some cases, incident light may be absorbed by the organic material to produce two triplet excitons. The triplet excitons may then transfer to the nanocrystal via the ligand, where they can undergo recombination, resulting in the formation low energy photons.
摘要:
A light-emitting element includes a stack of a first light-emitting layer emitting fluorescent light and a second light-emitting layer emitting phosphorescent light between a pair of electrodes. The second light-emitting layer includes a first layer in which an exciplex is formed, a second layer in which an exciplex is formed, and a third layer in which an exciplex is formed. The second layer is located over the first layer, and the third layer is located over the second layer. An emission peak wavelength of the second layer is longer than an emission peak wavelength of the first layer and an emission peak wavelength of the third layer.
摘要:
Provided is an organic light-emitting device improved in emission efficiency and lifetime. The organic light-emitting device includes a pair of electrodes and an organic compound layer disposed between the pair of electrodes, in which: the organic compound layer includes a benzo [f] isoquinoline iridium complex of a specific structure and a hydrocarbon compound of a specific structure; and the hydrocarbon compound is a compound formed only of an SP 2 carbon atom and a hydrogen atom.