TURBINE BLADE FATIGUE LIFE ANALYSIS USING NON-CONTACT MEASUREMENT AND DYNAMICAL RESPONSE RECONSTRUCTION TECHNIQUES
    2.
    发明申请
    TURBINE BLADE FATIGUE LIFE ANALYSIS USING NON-CONTACT MEASUREMENT AND DYNAMICAL RESPONSE RECONSTRUCTION TECHNIQUES 审中-公开
    使用非接触式测量和动态响应重构技术的涡轮叶片疲劳寿命分析

    公开(公告)号:WO2014055822A1

    公开(公告)日:2014-04-10

    申请号:PCT/US2013/063377

    申请日:2013-10-04

    Abstract: A method dynamically reconstructing a stress and strain field of a turbine blade includes providing a set of response measurements from at least one location on a turbine blade, band-pass filtering (32) the set of response measurements based on an upper frequency limit and a lower frequency limit, determining (33) an upper envelope and a lower envelope of the set of response measurements from local minima and local maxima of the set of response measurements, calculating (34) a candidate intrinsic mode function (IMF) from the upper envelope and the lower envelope of the set of response measurements, providing (37) an N x N mode shape matrix for the turbine blade, where N is the number of degrees of freedom of the turbine blade, when the candidate IMF is an actual IMF, and calculating (38) a response for another location on the turbine blade from the actual IMF and mode shapes in the mode shape matrix.

    Abstract translation: 动态地重建涡轮叶片的应力和应变场的方法包括从涡轮叶片上的至少一个位置提供一组响应测量值,基于上限频率带通滤波(32)响应测量集合,以及 较低的频率限制,从所述一组响应测量的局部最小值和局部最大值确定(33)所述一组响应测量的上包络和下包络,从所述上包络线计算(34)候选固有模函数(IMF) 和所述一组响应测量的下部包络,提供(37)用于所述涡轮叶片的N×N模式形状矩阵,其中当所述候选IMF是实际IMF时,其中N是所述涡轮叶片的自由度的数量, 并且从模式形状矩阵中的实际IMF和模式形状计算(38)对涡轮叶片上的另一位置的响应。

    MULTI-BONE SEGMENTATION FOR 3D COMPUTED TOMOGRAPHY
    7.
    发明申请
    MULTI-BONE SEGMENTATION FOR 3D COMPUTED TOMOGRAPHY 审中-公开
    用于3D计算机图像的多骨段分割

    公开(公告)号:WO2014052687A1

    公开(公告)日:2014-04-03

    申请号:PCT/US2013/062069

    申请日:2013-09-27

    Abstract: A method for multiple bone segmentation for three-dimensional computed tomography comprises the acts: - receiving (20) computed tomography (CT) data representing first and second bones of a patient; - separately segmenting (22) the first and second bones; - refining (30) the segmenting of the first bone as a function of a first confidence map of the segmenting; - refining (30) the segmenting of the second bone as a function of a second confidence map of the segmenting; - adjusting (34) results of the segmenting of the first and second bones jointly as a function the first and second confidence maps; and - outputting (30) an image showing the first and second bones with the adjusted results of the segmenting.

    Abstract translation: 用于三维计算机断层摄影的多骨分割方法包括以下动作: - 代表患者的第一和第二骨骼的接收(20)计算机断层摄影(CT)数据; - 分开(22)第一和第二骨骼; - 根据所述分割的第一置信度图来精炼(30)所述第一骨的分割; - 根据所述分割的第二置信图来精炼(30)所述第二骨的分割; - 调整(34)第一和第二骨骼的分割结果,作为第一和第二置信图的函数; 以及 - 输出(30)具有所述分割的调整结果的示出所述第一和第二骨骼的图像。

    PROBABILISTIC FATIGUE LIFE PREDICTION USING ULTRASONIC INSPECTION DATA CONSIDERING EIFS UNCERTAINTY
    8.
    发明申请
    PROBABILISTIC FATIGUE LIFE PREDICTION USING ULTRASONIC INSPECTION DATA CONSIDERING EIFS UNCERTAINTY 审中-公开
    使用超声波检查数据考虑EIFS不确定度的概率疲劳寿命预测

    公开(公告)号:WO2013152085A1

    公开(公告)日:2013-10-10

    申请号:PCT/US2013/035090

    申请日:2013-04-03

    Abstract: A method for probabilistically predicting fatigue life in materials includes sampling (41) a random variable for an actual equivalent initial flaw size (EIFS), generating (42) random variables for parameters (InC, m) of a fatigue crack growth equation [Formula should be inserted here] from a multivariate distribution, and solving (43) the fatigue crack growth equation using these random variables. The reported EIFS data is obtained by ultrasonically scanning a target object, recording echo signals from the target object, and converting echo signal amplitudes to equivalent reflector sizes using previously recorded values from a scanned calibration block. The equivalent reflector sizes comprise the reported EIFS data.

    Abstract translation: 一种用于概率预测材料疲劳寿命的方法包括对实际等效初始缺陷尺寸(EIFS)采样(41)随机变量,生成(42)疲劳裂纹扩展方程的参数随机变量(InC,m)[公式应该 并从多变量分布中求解(43)使用这些随机变量的疲劳裂纹扩展方程。 报告的EIFS数据是通过超声扫描目标物体,记录来自目标物体的回波信号,并使用先前记录的来自扫描校准块的值将回波信号幅度转换为等效反射镜尺寸而获得的。 等效的反射器尺寸包括报告的EIFS数据。

Patent Agency Ranking