Abstract:
A structured abrasive article is contacted by a laser beam to create microporous surface regions over a portion of the abrading surface to make a coated abrasive article that includes a backing and an abrasive layer comprising abrasive composites secured to the backing.
Abstract:
This disclosure provides methods of making enhanced activity nanostructured thin film catalyst by radiation annealing, typically laser annealing, typically under inert atmosphere. Typically the inert gas has a residual oxygen level of 100 ppm. Typically the irradiation has an incident energy fluence of at least 30 mJ/mm 2 ?. In some embodiments, the radiation annealing is accomplished by laser annealing. In some embodiments, the nanostructured thin film catalyst is provided on a continuous web.
Abstract:
An abrasive article useful for finishing painted or clear coated surfaces is disclosed. The abrasive article included a structured abrasive layer disposed on a backing that is adhesively attached to nonwoven layer useful for providing conformability and attachment to a hook layer. The structured abrasive layer includes a central aperture and a plurality of surrounding apertures.
Abstract:
The present application relates to an apparatus ( 52 ) for supporting sheet material during cutting by laser radiation comprising a support member ( 42 ) having a gold facing layer. A method for cutting sheet material using such apparatus is also defined.
Abstract:
A film having first and second segments alternating across the film's width direction. The second segments are more elastic than the first segments. The first segments absorb light at a selected wavelength to a greater extent than the second segments. At least some of the first segments have apertures through their thicknesses, and a percentage of area of the first segments occupied by the apertures is greater than a percentage of area occupied by any apertures that may extend through the second segments. Laminates and absorbent articles including such films are also disclosed. A method of making the film is also described. The method includes forming apertures in at least some of the first segments using a laser at the selected wavelength. The first segments have a sufficient absorbance of light at the selected wavelength to form apertures through their thicknesses.
Abstract:
A method of making shaped ceramic abrasive particles includes cutting a layer of ceramic precursor material using a laser beam and forming shaped ceramic precursor particles. Further thermal processing provides shaped ceramic abrasive particles. Shaped ceramic abrasive particles producible by the methods and abrasive articles containing them are also disclosed.
Abstract:
Techniques are described for forming microlens sheeting having composite images that appear to float with respect to the plane of the sheeting. As one example, a method comprises forming one or more images within a sheeting having a surface of microlenses, wherein at least one of the images is a partially complete image, and wherein each of the images is associated with a different one of the microlenses, wherein the microlenses have refractive surfaces that transmit light to positions within the sheeting to produce a plurality of composite images from the images formed within the sheeting so that each of the composite images appears to float with respect to the plane of the sheeting, and wherein forming the one or more images comprises forming the one or more images such that each of the composite images is associated with a different viewing angle range.
Abstract:
Abrasive articles, and methods of making abrasive articles that include a supersize coating or component, such as one configured to inhibit the collection of dust and/or swarf on the abrasive coating. The supersize component can be applied to the abrasive coating after converting the abrasive article with a laser or other conversion mechanism, whether non-contact or mechanical contact. In some embodiments, no fresh or exposed abrasive or backing surfaces exist; that is, the supersize component covers all surfaces.