Abstract:
A process to mark a multilayered article with a laser (20). The multilayered article (10) includes a laser-markable layer (14) having at least one organic polymer and at least one light-sensitive pigment therein, and including at least one release agent associated with the laser-markable layer. Laser-marking of the laser-markable layer is accomplished by directing laser radiation (22) into the multilayered article through the release agent (12) to induce an interaction between the light-sensitive pigment and the organic polymer. As a result of the interaction, a visually perceptible marking (16) is formed in the article. The laser-marked article includes a laser-markable layer and a first release agent associated with a surface of the laser-markable layer. The marking (s) in the laser-markable layer is visible through the layer of release agent, and the marking is a result of the laser-induced interaction between the light-sensitive pigment and the organic polymer.
Abstract:
Techniques are described for forming microlens sheeting having composite images that appear to float with respect to the plane of the sheeting. As one example, a method comprises forming one or more images within a sheeting having a surface of microlenses, wherein at least one of the images is a partially complete image, and wherein each of the images is associated with a different one of the microlenses, wherein the microlenses have refractive surfaces that transmit light to positions within the sheeting to produce a plurality of composite images from the images formed within the sheeting so that each of the composite images appears to float with respect to the plane of the sheeting, and wherein forming the one or more images comprises forming the one or more images such that each of the composite images is associated with a different viewing angle range.
Abstract:
A method for building three-dimensional articles using a thermal polymerization process in provided. The articles are built by using a composition that includes a thermally polymerizable composition, a thermal initiator, and a nonlinear light-to-heat conversion material such as a reverse saturable dye. The article is built by the sequential exposure of adjacent voxels with a laser beam. Microlens arrays can be used to expose more than one voxel at a time.
Abstract:
Methods for generating a color image are provided which include a multi-layer construction in which at least one of the layers is a thermally activatable layer that includes a thermally activatable composition. The thermally activatable composition includes a non-linear light to heat converter composition and a color forming compound. Upon activation with a light source an image forms.
Abstract:
Crosslinked silicone foams are provided that can be substantially free of chemical blowing agents or byproducts thereof. These foams can be prepared from polymerizable silicone compositions that include an MQ-water cluster including a silicate MQ resin and a quantity of water dispersed in the silicate MQ resin and a silicone fluid, wherein the MQ-water cluster and silicone fluid collectively provide a inverted emulsion having a continuous and a discontinuous phase, the continuous phase including the silicone fluid and the discontinuous phase including the MQ-water cluster. The foams can be made by dispersing water into a silicate MQ resin to provide an MQ-water cluster; dispersing the stabilized MQ- water cluster into a silicone fluid to obtain an inverted silicone emulsion having the MQ-water cluster as a discontinuous phase and the silicone fluid as a continuous phase; foaming the silicone emulsion by evolving the water in the MQ-water cluster to provide a cellular structure; and polymerizing the silicone emulsion.
Abstract:
A coated abrasive article comprises an abrasive layer secured to a backing. The abrasive layer comprises abrasive particles secured by at least one binder to a first major surface of the backing. A supersize is disposed on at least a portion of the abrasive layer. The coated abrasive article has a melt flow zone adjacent to an edge of the coated abrasive article, wherein the melt flow zone has a maximum width of less than 100 micrometers, and the melt flow zone has a maximum height of less than 40 micrometers. Methods of using infrared lasers to ablate coated abrasive articles are also disclosed, wherein a laser wavelength is matched to a component of the coated abrasive article.
Abstract:
Multi-layer articles capable of forming color images are provided. The articles include a multi-layer construction with at least two layers in which at least one of the layers includes a thermally activatable composition. The thermally activatable composition includes a non-linear light to heat converter composition and a color forming compound. Upon activation with a light source an image forms.
Abstract:
Methods for generating a color image are provided which include a multi-layer construction in which at least one of the layers is a thermally activatable layer that includes a thermally activatable composition. The thermally activatable composition includes a non-linear light to heat converter composition and a color forming compound. Upon activation with a light source an image forms.
Abstract:
A transparent electrical conductor (10; 20), comprising a transparent substrate (14; 201); a composite layer (18; 28) comprising an electrically conductive layer (12) disposed on at least a portion of a major surface of the transparent substrate (14; 201) and comprising a plurality of interconnecting metallic nanowires, and a polymeric overcoat layer (16) disposed on at least a portion of the electrically conductive layer (12); wherein a pattern in the composite layer includes an x-axis and a y-axis of an x-y plane of the composite layer and a z- axis into the x-y plane of the composite layer, and the pattern defines a plurality of electrically conductive regions (24, 24') in the x-y plane of the composite layer (18; 28), wherein the electrically conductive regions (24, 24') are separated from each other by electrically insulative traces (21), each of which defines a valley into the z-axis of the x-y plane of the composite layer (18; 28), the valley having a maximum depth (27) in a range from 50 nanometers to 100 nanometers relative to the x-y plane of the composite layer (18; 28), wherein the valley has a cross-sectional width (M1) in a range from 10 micrometers to 1000 micrometers, and wherein the valley further comprises a plurality of crevices (22) having a depth (23) in a range from 50 nanometers to 100 nanometers further into the z-axis of the x-y plane of the composite layer (18; 28). Methods for pattemwise irradiating transparent electrodes (10; 20) to generate electrically insulating traces (21) are also described.
Abstract:
A method for building three-dimensional articles using a thermal polymerization process in provided. The articles are built by using a composition that includes a thermally polymerizable composition, a thermal initiator, and a nonlinear light-to-heat conversion material such as a reverse saturable dye. The article is built by the sequential exposure of adjacent voxels with a laser beam. Microlens arrays can be used to expose more than one voxel at a time.