Abstract:
A membrane electrode assembly having electrodes integrated with transport protection layers. The assembly includes two non-woven porous electrode composites with an ion permeable membrane disposed between them. Each electrode composite includes an electrode integrated with a transport protection layer such that fibers of the electrode penetrate into the transport protection layer.
Abstract:
Predicting future infrastructure performance of a pathway article based on data for infrastructure performance features that influence predicted infrastructure performance at a future point in time. To predict infrastructure performance at a future point in time, a computing device receives one or more sets of infrastructure performance data for a pathway article that correspond respectively to infrastructure performance features. The infrastructure performance features may influence predicted infrastructure performance of the pathway article at a future point in time and the infrastructure performance data may correspond to a roadway portion. The computing device may generate, based at least in part on applying the one or more sets of infrastructure performance data to a model, at least one infrastructure performance prediction value that indicates predicted infrastructure performance of the pathway article at the future point in time.
Abstract:
In some examples, a computing device includes one or more computer processors, a communication device, and a memory comprising instructions that cause the one or more computer processors to: receive, using the communication device and from a set of vehicles, different sets of infrastructure data for a particular infrastructure article that is proximate to each respective vehicle of the set of vehicles, wherein each respective vehicle in the set of vehicles comprises at least one infrastructure sensor that generates infrastructure data descriptive of infrastructure articles that are proximate to the respective vehicle; determine, based at least in part on the different sets of infrastructure data for the particular infrastructure article from each respective vehicle of the set of vehicles, a quality metric for the infrastructure article; and perform at least one operation based at least in part on the quality metric for the infrastructure article.
Abstract:
Selecting navigation routes based on infrastructure performance values that indicate infrastructure performance of pathway articles. To select navigation routes, a computing device receives one or more infrastructure performance values. The infrastructure performance values can indicate infrastructure performance of the pathway article and may correspond to a roadway portion. The computing device may determine, based at least in part on the one or more infrastructure performance values, a navigation route comprising a set of roadway portions from an initial location to a subsequent location. The computing device may perform at least one operation based at least in part on the navigation route comprising the set of roadway portions from the initial location to the subsequent location.
Abstract:
A method comprises exposing a particle coating disposed on a thermally-softenable film to a modulated source of electromagnetic radiation. The particle coating comprises distinct particles that are not covalently bonded to each other, and are not retained in a binder material other than the thermally- softenable film. Articles made by the method are also disclosed.
Abstract:
Multilayered polymer films are configured so that successive layer packets can be delaminated in continuous sheet form from the remaining film. The films are compatible with known coextrusion manufacturing techniques, and can be made without adhesive layers between layer packets. The layer packets are individually peelable from the remainder of the film. Combinations of polymer compositions are used to allow non-adhesive polymer layers to be combined such that irreversible delamination of the film is likely to occur at interfaces between layer packet pairs. The films are post-formed, e.g. using heat and pressure, to deform the film from an initial flat or limp condition into a contoured shape that is self-supporting. The contoured shape may comprise regions of simple and/or complex curvature. Despite the permanent contoured shape, individual packets can still be successively peeled away to expose a fresh surface of the next layer packet, having the same contoured shape.
Abstract:
This disclosure describes multilayer polymer films that are configured so that successive constituent layer packets may be delaminated in continuous sheet forms from the remaining film. This disclosure further describes compositions, materials, and methods for minimizing the likelihood of removing multiple layer packets together including by increasing the peel force between layer packets. In some embodiments, that the peel force becomes successively greater from the interface between the first layer packet and the second layer packet to the interface between the next to last ((n-1)th layer packet) and the last (nth layer packet).
Abstract:
A melt-processable conductive material including a first continuous phase, a second continuous phase and a non-continuous phase. The first continuous phase includes a first polymer, the second continuous phase includes a second polymer, and the non-continuous phase includes a third polymer. The second continuous phase is co-continuous with the first continuous phase and the non-continuous phase is substantially contained within the first continuous phase. A plurality of conductive particles is distributed in the first polymer or at a boundary between the first continuous phase and the second continuous phase. The conductive particles form a conductive network.
Abstract:
Provided are composite material comprising hollow glass microspheres and a microcellular thermoplastic resin, articles molded from such materials, and methods of making such materials.