Abstract:
In dem Halbleiterkörper (1) ist eine Aussparung (11) vorhanden, die den Halbleiterkörper durchdringt. Eine Leiterschicht (6), die mit einer Metallebene (3) auf oder über dem Halbleiterkörper elektrisch leitend verbunden ist, schirmt den Halbleiterkörper von der Aussparung elektrisch ab. Die Leiterschicht kann Metall, gegebenenfalls mit einer Barriereschicht (6a), oder ein dotierter Bereich des Halbleiterkörpers sein.
Abstract:
The lateral single-photon avalanche diode comprises a semiconductor body (1, 2) comprising a semiconductor material of a first type of electric conductivity, a trench (3) in the semiconductor body, and anode and cathode terminals (5, 6). A junction region (14) of the first type of electric conductivity is located near the sidewall (38) of the trench, and the electric conductivity is higher in the junction region than at a farther distance from the sidewall. A semiconductor layer (4) of an opposite second type of electric conductivity is arranged at the sidewall of the trench adjacent to the junction region. The anode and cathode terminals are electrically connected with the semiconductor layer and with the junction region, respectively. The junction region (14) may be formed by a sidewall implantation.
Abstract:
The method comprises the steps of providing a semiconductor body or substrate (1) with a recess or trench (2) in a main surface (10), applying a mask (3) on the main surface, the mask covering the recess or trench, so that the walls and bottom of the recess or trench and the mask together enclose a cavity (4), which is filled with a gas, and forming at least one opening (5) in the mask at a distance from the recess or trench, the distance (6) being adapted to allow the gas to escape from the cavity via the opening when the gas pressure exceeds an external pressure.
Abstract:
The semiconductor device comprises a substrate (1) of semiconductor material, a dielectric layer (2) above the substrate, a waveguide (3) arranged in the dielectric layer, and a mirror region (4) arranged on a surface of a mirror support (5) integrated on the substrate, the mirror support being a high-density plasma deposited oxide. A mirror is thus formed facing the waveguide. The surface of the mirror support and hence the mirror are inclined with respect to the waveguide.