Abstract:
A method for manufacturing a front floating emitter type solar cell includes providing a silicon substrate (10) of a first or second conductivity type with a front surface (13) and a rear surface (11); creating a tunneling oxide layer (12) on the rear surface of the silicon substrate; depositing a polysilicon layer (14) on at least the rear surface; creating a doped area of the first conductivity type in an area part of the polysilicon layer on the rear surface; forming in or on the front surface a doped layer (23) of the second conductivity type opposite to the first conductivity type. In the area part of the polysilicon layer on the rear surface, a concentration of the impurity of the first conductivity type is larger than a concentration of the impurity of the second conductivity type, and the area part of the polysilicon layer on the rear surface has conductivity of the first conductivity type.
Abstract:
Methods of fabricating solar cells using a metal-containing thermal and diffusion barrier layer in foil-based metallization approaches, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of semiconductor regions in or above a substrate. The method also includes forming a metal-containing thermal and diffusion barrier layer above the plurality of semiconductor regions. The method also includes forming a metal seed layer on the metal-containing thermal and diffusion barrier layer. The method also includes forming a metal conductor layer on the metal seed layer. The method also includes laser welding the metal conductor layer to the metal seed layer. The metal-containing thermal and diffusion barrier layer protects the plurality of semiconductor regions during the laser welding.
Abstract:
A method of fabricating a solar cell can include forming a dielectric region on a silicon substrate. The method can also include forming an emitter region over the dielectric region and forming a dopant region on a surface of the silicon substrate. In an embodiment, the method can include heating the silicon substrate at a temperature above 900 degrees Celsius to getter impurities to the emitter region and drive dopants from the dopant region to a portion of the silicon substrate.
Abstract:
Methods of fabricating solar cells using simplified deposition processes, and the resulting solar cells, are described. In an example, a method of fabricating a solar cell involves loading a template substrate into a deposition chamber and, without removing the template substrate from the deposition chamber, performing a deposition method. The deposition method involves forming a first silicon layer on the template substrate, the first silicon layer of a first conductivity type. The deposition method also involves forming a second silicon layer on the first silicon layer, the second silicon layer of the first conductivity type. The deposition method also involves forming a third silicon layer above the second silicon layer, the third silicon layer of a second conductivity type. The deposition method also involves forming a solid state doping layer on the third silicon layer, the solid state doping layer of the first conductivity type.
Abstract:
Bei einer rückseitenkontaktierten Si-Dünnschicht-Solarzelle, mindestens aufweisend eine kristalline Si-Absorberschicht sowie eine auf der kristallinen Si-Absorberschicht angeordnete Emitterschicht aus Halbleitermaterialien gegensätzlicher p- und n-Typ Dotierung, ist auf einem Glassubstrat eine Barriereschicht gebildet, die eine Schichtdicke im Bereich von 50 nm bis 1 μm aufweist, ist auf der Barriereschicht mindestens eine die optischen Eigenschaften verbessernde Schicht mit einer Schichtdicke von 40 nm bis 250 nm angeordnet, auf der eine 0,5 nm bis 20 nm dünne Silizium und/oder Sauerstoff enthaltende Schicht angeordnet ist, wobei die kristalline Si-Absorberschicht herstellbar ist durch eine Flüssigphasenkristallisation und n-leitend ist, eine Schichtdicke zwischen 200 nm und 40 μm mit einer homogenen Dotierung zwischen 2⋅10 15 cm -3 bis 5⋅10 18 cm -3 über die gesamte Dicke sowie monokristalline Si-Körner aufweist, die in ihrer Ausdehnung mindestens so groß sind wie die Dicke der Absorberschicht, und zwischen der Silizium und/oder Sauerstoff enthaltenden Schicht und der Si-Absorberschicht eine SiO 2 -Passivierschicht während der Flüssigphasenkristallisation ausgebildet ist.
Abstract:
Approaches for forming barrier-less seed stacks and contacts are described. In an example, a solar cell includes a substrate and a conductive contact disposed on the substrate. The conductive contact includes a copper layer directly contacting the substrate. In another example, a solar cell includes a substrate and a seed layer disposed directly on the substrate. The seed layer consists essentially of one or more non-diffusion-barrier metal layers. A conductive contact includes a copper layer disposed directly on the seed layer. An exemplary method of fabricating a solar cell involves providing a substrate, and forming a seed layer over the substrate. The seed layer includes one or more non-diffusion-barrier metal layers. The method further involves forming a conductive contact for the solar cell from the seed layer.
Abstract:
Methods of fabricating solar cell emitter regions using self-aligned implant and cap, and the resulting solar cells, are described. In an example, a method of fabricating an emitter region of a solar cell involves forming a silicon layer above a substrate. The method also involves implanting, through a stencil mask, dopant impurity atoms in the silicon layer to form implanted regions of the silicon layer with adjacent non-implanted regions. The method also involves forming, through the stencil mask, a capping layer on and substantially in alignment with the implanted regions of the silicon layer. The method also involves removing the non-implanted regions of the silicon layer, wherein the capping layer protects the implanted regions of the silicon layer during the removing. The method also involves annealing the implanted regions of the silicon layer to form doped polycrystalline silicon emitter regions.
Abstract:
One aspect of the present invention is a double sided hybrid crystal structure including a trigonal Sapphire wafer containing a (0001) C-plane and having front and rear sides. The Sapphire wafer is substantially transparent to light in the visible and infrared spectra, and also provides insulation with respect to electromagnetic radio frequency noise. A layer of crystalline Si material having a cubic diamond structure aligned with the cubic direction on the (0001) C-plane and strained as rhombohedron to thereby enable continuous integration of a selected (SiGe) device onto the rear side of the Sapphire wafer. The double sided hybrid crystal structure further includes an integrated Ill-Nitride crystalline layer on the front side of the Sapphire wafer that enables continuous integration of a selected III-Nitride device on the front side of the Sapphire wafer.
Abstract:
An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer (102) formed on a backside surface of a single crystalline silicon substrate (101). One emitter (103) of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer (102). The other emitter (108) of the solar cell is formed in the single crystalline silicon substrate (101) and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts (107) to connect to corresponding emitters (108, 103).
Abstract:
Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.