Abstract:
A portable electronic device having several features is disclosed. The device can include a retention member that retains flexible circuits extending from a top portion to a bottom portion of the device, thereby allowing some components to be moved from a top portion of the device to a bottom portion. The device may include a cover plate can be secured with a display in the top portion to cover the retention member and other internal components. The device can include an omni-directional port designed to receive a connector different orientations and provide power to the device. The device can include a flexible keyboard having butterfly keycaps. The device can include an array of openings for an audio driver, with some of the array including through holes and blind holes. The device can also include a touch pad having a force feedback sensor and a haptic device.
Abstract:
The present application describes various embodiments of systems and methods for internal components for portable computing devices relating to keyboard components and keyboard backlighting. In one embodiment, a keyboard module can include a rectangular light guide panel and a driver board including discrete light sources mounted on the driver board where the driver board is disposed along one edge of the light guide panel and light emitted for the discrete light sources is captured by the light guide panel and distributed to predetermined locations.
Abstract:
A venting system (604) for a keyboard assembly (200) is disclosed. A keyboard assembly includes a printed circuit board (500) defining a set of apertures (504), and a group of switch housings (400) coupled to the printed circuit board. Each switch housing of the group of switch housings may define a switch opening (402) positioned above one of the set of apertures of the printed circuit board. The keyboard assembly may also include a shield (600) defining at least one channel (606) of a venting system (604) formed below the printed circuit board. The at least one channel may be in fluid communication with at least one aperture, and at least one of the switch openings positioned above the at least one aperture.
Abstract:
A dome switch utilized in a keyboard assembly is disclosed. The keyboard assembly may include a printed circuit board having a first electrical connector formed in the printed circuit board, and a second electrical connector formed in the printed circuit board adjacent the first electrical connector. The keyboard assembly may also include an inner contact component contacting the second electrical connector of the printed circuit board. The inner contact component may be in electrical communication with the second electrical connector of the printed circuit board. Additionally, the keyboard assembly can include a dome switch surrounding the inner contact component. The dome switch may contact and may be in electrical communication with the first electrical connector of the printed circuit board.
Abstract:
A portable computing device includes at least a base portion of a lightweight material that includes at least a wedge shaped top case having a trough formed at an interfacing edge thereof. The trough includes a raised shoulder portion having a first contact surface and a receiving area, and a bottom case coupled to the top case to form a complete housing for at least a portion of the portable computing device for enclosing at least a plurality of operational components and a plurality of structural components. The portable computing device also includes at least a lid portion pivotally connected to the base portion by a hinge assembly. In the described embodiments, the lid portion has a display in communication with one or more of the plurality of components in said base portion by way of or more electrical conductors that electrically connect the base portion to the lid portion.
Abstract:
Integrated power modules according to the present technology may include a printed circuit board characterized by a first surface and a second surface. The integrated power modules may include one or more surface-mounted components coupled with the first surface of the printed circuit board. The integrated power modules may include a heat-transfer substrate. The integrated power modules may include one or more gallium nitride transistors coupled between and soldered to each of the second surface of the printed circuit board and the heat-transfer substrate. The integrated power modules may include one or more spacers coupled between and soldered to each of the printed circuit board and the heat-transfer substrate.
Abstract:
An input device, such as a keyboard, includes one or more keys that each includes a keycap operable to move within an aperture of a frame to activate a switch and fabric disposed over the frame and keycap. A first region of the fabric is bonded to the keycap and a second region of the fabric is bonded to the frame. The first region may be an embossed region and the second region may be an unembossed region. The fabric may dampen sound from within the keyboard, such as noise related to movement of the keycap, activation of the switch, and so on. The fabric may also form a barrier that restricts passage of contaminants into the aperture and/or other portions of the input device.
Abstract:
A key mechanism can include one or more butterfly hinges. Each butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together.
Abstract:
The present application describes various embodiments of systems and methods for providing internal components for portable computing devices having a thin profile. More particularly, the present application describes internal components configured to fit within a relatively thin outer enclosure.
Abstract:
A key mechanism including one or more butterfly hinges. Each butterfly hinge may include a double wing design operative to move between a depressed position and non-depressed position. Hinged coupling mechanisms couple respective arms of the wings together. Additionally or alternatively, a key mechanism can include one or more half-butterfly hinges. Each half-butterfly hinge includes a double wing design operative to move between a depressed position and non-depressed position. A hinged coupling mechanism couples one set of corresponding arms of the wings together, while the other set of corresponding arms are not coupled together.