Abstract:
A device, system and method for a user equipment (UE) to report a network resource and capability state to a network for coordinating network resource allocations. The UE is configured to establish a first connection to a first network based on a first subscriber identity module (SIM) of the UE and further configured to establish a second connection to a second network based on a second SIM of the UE. The method includes determining an upcoming first change of a state of the UE with respect to the first connection and transmitting, to the first network, an indication of the first change of state of the UE. The method further includes changing the state of the UE with respect to the first connection.
Abstract:
A device, system, and method perform an adaptive link adaptation. The method, at a user equipment (UE) connected to a Long Term Evolution (LTE) network via an evolved Node B (eNB), includes determining a type of wireless traffic being utilized by the UE based upon at least one application executed on the UE, the wireless traffic being one of a data only, a voice only, or a combination thereof. The method includes determining a block error rate (BLER) target value to be used in a channel state feedback operation associated with a link adaptation operation for a connection between the UE and the eNB.
Abstract:
A method for adaptively disabling receiver diversity is provided. The method can include a wireless communication device determining an active data traffic pattern; defining a threshold channel quality metric based at least in part on a threshold channel quality needed to support a threshold quality of service for the active data traffic pattern; comparing a measured channel quality to the threshold channel quality metric; and disabling receiver diversity in an instance in which the measured channel quality metric satisfies the threshold channel quality metric.
Abstract:
Methods and apparatus for adaptively adjusting temporal parameters (e.g., neighbor cell search durations). In one embodiment, neighbor cell search durations during discontinuous reception are based on a physical channel metric indicating signal strength and quality (e.g. Reference Signal Received Power (RSRP), Received Signal Strength indication (RSSI), Reference Signal Receive Quality (RSRQ), etc.) of a cell. In a second embodiment, neighbor cell search durations are based on a multitude of physical layer metrics from one or more cells. In one variant, the multitude of physical layer metrics may include signal strength and quality metrics from the serving base station as well as signal strength and quality indicators from neighbor cells derived from the cells respective synchronization sequences.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform user equipment (UE) initiated beam management procedures with a base station or gNB. A wireless device in communication with a 5G base station may detect degradation in the pair of transmit and receive beams between the gNB and the device. The device may select a preferred beam management procedure and indicate the preference to the gNB.
Abstract:
Described herein are apparatuses, systems and methods for adaptive downlink scheduling and link adaptation. The methods including, at a base station connected to a user equipment ("UE"), determining an initial modulation and coding scheme ("MCS") for a plurality of subframes to be transmitted to the UE, wherein each MCS relates to a coding rate value for the subframes, determining an MCS pattern for the plurality of subframes based on the initial MCS, wherein an MCS for one of the subframes has a higher coding rate value than the initial MCS, and transmitting the plurality of subframes to the UE according to the MCS pattern.
Abstract:
Methods and apparatus for adaptively adjusting receiver operation during non- continuous (e.g., discontinuous) reception. In one exemplary embodiment, a user device such as a User Equipment (UE) adaptively adjusts its reception mode based on a determined actual error. The reception mode is selected so as to improve reception performance, while still minimizing overall power consumption.
Abstract:
Techniques discussed herein can facilitate beam management for non-terrestrial networks (NTN). One example aspect is A baseband processor, comprising: a memory interface; and processing communicatively coupled to the memory and transceiver interface and, while connected to a base station (BS) within a cell of a non-terrestrial network (NTN) and, where the cell comprises a plurality of bandwidth parts (BWPs) associated with a plurality of beams, configured to perform operations comprising: receiving a signaling from the base station (BS) comprising a channel state indicator reference signal (CSI-RS) configuration associated with a first BWP of the plurality of BWPs, where the CSI-RS configuration comprises a beam measurement configuration for the plurality of beams, switching from a second BWP of the plurality of BWPs to the first BWP according to the CSI-RS configuration and measure one or more of the plurality of beams according to the beam measurement configuration; and generating a measurement report that includes a layer 1 reference signal received power (L1-RSRP) measurement from the measured one or more of the plurality of beams.
Abstract:
Systems, methods, and circuitries are provided for supporting blind retransmission. In one example, a method includes processing control information that indicates resources for communication of a physical downlink shared channel or a physical uplink shared channel (PDSCH/PUSCH) transmission and timing information for a retransmission of the PDSCH/PUSCH. The method includes configuring operation to: receive the PDSCH/PUSCH transmission based on the resources; and determine that a subsequent PDSCH/PUSCH received at a subsequent time corresponds to the retransmission of the PDSCH/PUSCH when the subsequent time coincides with the indicated timing information for the retransmission and, in response combine the PDSCH/PUSCH with the retransmission in a HARQ buffer for decoding purposes.
Abstract:
Apparatuses, systems, and methods for performing timing synchronization between a base station and a user equipment device within an unlicensed spectrum band. In some scenarios, beamforming tracking may also be performed. Upon determining that a transmission medium within the unlicensed spectrum band is available for transmission, a base station may transmit a plurality of synchronization signal blocks (SSBs), or a plurality of copies of one SSB, with associated remaining minimum system information (RMSI) blocks, within a single time instance within a SSB burst window. The SSBs may be transmitted at different frequency positions and according to distinct beamforming configurations. The SSBs and RMSI blocks may be configured such that a receiving user equipment device may determine the time-domain, and optionally the frequency-domain, position of the SSB and RMSI within the SSB burst window, to allow timing synchronization and optionally beamforming tracking.