ROAD CURVATURE ESTIMATION AND AUTOMOTIVE TARGET STATE ESTIMATION SYSTEM
    1.
    发明申请
    ROAD CURVATURE ESTIMATION AND AUTOMOTIVE TARGET STATE ESTIMATION SYSTEM 审中-公开
    道路曲率估计与汽车目标状态估计系统

    公开(公告)号:WO2004008648A2

    公开(公告)日:2004-01-22

    申请号:PCT/US2003/022182

    申请日:2003-07-15

    IPC: H04B

    Abstract: A first Kalman filter (52) estimates true measures of yaw rate (ω) and vehicle speed (U) from associated noisy measures thereof generated by respective sensors (16, 18) in a host vehicle (12), and a second Kalman filter (54) estimates therefrom parameters (C 0 , C 1 ) of a clothoid model of road curvature. Measures of range ( r ), range rate (S) and azimuth angle (ŋ) from a target state estimation subsystem (44), e.g. a radar system (14), are processed by an extended Kalman filter (56) to provide an unconstrained estimate of the state of a target vehicle (36). Associated road constrained target state estimates are generated for one or more roadway lanes (38, 40), and are compared- either individually or in combination- with the unconstrained estimate. If a constrained target state estimate corresponds to the unconstrained estimate, then the state of the target vehicle is generated by fusing the unconstrained and constrained estimates; and otherwise is given by the unconstrained estimate alone.

    Abstract translation: 第一卡尔曼滤波器(52)根据由主车辆(12)中的各个传感器(16,18)产生的相关噪声测量来估计偏航角速度(ω)和车速(U) ),并且第二卡尔曼滤波器(54)从中估计道路曲率的回旋曲线模型的参数(C 0,C 1,C 1)。 来自目标状态估计子系统(44)的距离(r),距离率(S)和方位角(ŋ)的测量,例如, 雷达系统(14)由扩展卡尔曼滤波器(56)处理以提供目标车辆(36)的状态的无约束估计。 为一个或多个道路车道(38,40)产生相关的道路约束目标状态估计值,并且与单独或组合地与非约束估计值进行比较。 如果受约束的目标状态估计对应于无约束估计,则通过融合无约束和约束估计来生成目标车辆的状态; 否则只能由无约束的估计值给出。

    ROAD CURVATURE ESTIMATION SYSTEM
    2.
    发明申请
    ROAD CURVATURE ESTIMATION SYSTEM 审中-公开
    道路曲线估计系统

    公开(公告)号:WO2005062984A2

    公开(公告)日:2005-07-14

    申请号:PCT/US2004/043695

    申请日:2004-12-24

    CPC classification number: G01S13/58 G01S13/723 G01S13/931 G01S2013/9353

    Abstract: A processor (26) using a first Kalman filter (52, 52.1) estimates a host vehicle state from speed (U) and yaw rate, the latter of which may be from a yaw rate sensor (16) if speed (U) is greater than a threshold, and, if less, from a steer angle sensor and speed (U). Road curvature parameters (C0, C1) are estimated from a curve fit of a host vehicle trajectory or from a second Kalman filter (54, 54.1) for which a state variable may be responsive to a plurality of host state variables (72, 74). Kalman filters (52, 52.1, 54, 54.1) may incorporate adaptive sliding windows. Curvature of a most likely road type is estimated with an interacting multiple model (IMM) algorithm (2400) using models of different road types. A road curvature fusion subsystem (96) provides for fusing road curvature estimates from a plurality of curvature estimators (42.1, 42.2, 42.N) using either host vehicle state, a map database (88) responsive to vehicle location (86), or measurements of a target vehicle (36) with a radar system (14).

    Abstract translation: 使用第一卡尔曼滤波器(52,52.1)的处理器(26)从速度(U)和横摆率估计主车辆状态,如果速度(U)更大,后者可以来自偏航率传感器(16) 并且如果较小,则从转向角传感器和速度(U)。 根据主车辆轨迹的曲线拟合或状态变量可响应于多个主机状态变量(72,74)的第二卡尔曼滤波器(54,54.1)来估计道路曲率参数(C0,C1) 。 卡尔曼滤波器(52,52.1,54,54.1)可以包括自适应滑动窗口。 使用不同道路类型的模型,使用交互式多模型(IMM)算法(2400)估计最可能的道路类型的曲率。 道路曲率融合子系统(96)提供使用主车辆状态,响应于车辆位置(86)的地图数据库(88)来​​自多个曲率估计器(42.1,42.2,42.N)来融合路面曲率估计,或 用雷达系统(14)对目标车辆(36)进行测量。

Patent Agency Ranking