Abstract:
An internal component arrangement within a battery pack housing having multiple cells and adapted for cordless power tools may provide desired mechanical support to constrain the cells. The housing with internal component arrangement is configured to route sensing wires from the cells to an electronics module of the pack.
Abstract:
A battery-powered motor may include an electric motor, a controller, and a housing. The electric motor may be wound to enable the battery-powered motor to achieve a non-limited motor maximum motor revolutions per minute (RPM) for at least one specified battery. The controlling current may include limiting current to the electric motor at lower RPMs, and limiting the current to prevent the RPM of the electric motor from exceeding a limited maximum motor RPM which is lower than the non-limited motor maximum RPM. The housing may enclose the electric motor and the controller and the specified battery. The housing may have a form factor to engage with a machine that engages with an internal combustion engine that has a maximum engine RPM that is approximately the same as the limited maximum motor RPM.
Abstract:
A battery pack and transport coupler for enabling the battery pack to reduce the pack power capacity. The battery pack include a plurality of strings of battery cells and a switching network for coupling and decoupling the strings of battery cells from each other. When the plurality of strings of battery cells are coupled together in a default configuration the transport coupler includes a decoupler for decoupling the strings of battery cells and when the plurality of strings of battery cells are not coupled together ina default configuration the transport coupler includes a coupler for coupling the strings of battery cells for operation with an electronic device such as a power tool.
Abstract:
In one general aspect, a device can include a housing and an electrical component disposed within the housing. At least a portion of the electrical component can include an active-passive material. The active-passive material can have a passivation range spanning a target bias voltage range of the device.
Abstract:
A generator incorporating a double sided fan operable to generate dual, spaced apart, simuitaneous cooling airflows within the generator to more efficiently cool internai components located on opposite sides of the fan. The double sided fan generates a first cooling airflow into a permanent magnet generator (PMG) assembly and a second cooling airflow through an electronics assembly. The first cooling airflow cools a stator disposed within the PMG assembly, while the second cooling airflow cools a plurality of circuit boards disposed within the electronics assembly. The fan exhausts both cooling airflows radially outwardly.
Abstract:
An appliance includes an electrical connection to receive power from a mains line through an electrical grid to operate the appliance, at least one battery to supply power to operate the appliance, a battery charging circuit for charging the at least one battery and a controller. The controller is programmed to determine when to use power from the mains line to operate the appliance and/or to charge the at least one battery and determine when to use power from the at least one battery and/or to supply power back to the electrical grid.
Abstract:
A cordless system has cordless system components that include a cordless device, such as a cordless power tool, a battery pack and a charger. The battery pack is mated with either the cordless device to provide power to operate the cordless device or to the charger to charge the battery cells in the battery pack. In an aspect, the cordless system has an identification and communication system by which the battery pack identifies and communicates information about the battery pack to the cordless device or to the charger to which the battery pack is mated. In an, the battery pack of the cordless system is capable of multiple modes, such as controlling the cordless device and controlling the charger. In an aspect, the battery pack validates the cordless device or charger to which it is mated. in an aspect of the invention, the cordless system uses any of a wired interface, radio frequency interface, an optical interface or a magnetic interface to communicate information between the battery pack and the cordless device or charger to which the battery pack is mated. In an aspect, female terminals are used in a terminal block of the battery pack to protect against foreign objects contacting the terminals. In aspect, the terminals in the terminal block of the battery pack are staggered or scattered to reduce the likelihood of a short circuit. In an aspect of the invention, the battery pack has a trap door that closes when the battery pack is not mated to a cordless device or charger to protect the terminal block of the battery pack. In an aspect of the invention, multi-spring, split contact terminals are used in the terminal block of at least one of the cordless system components. In an aspect of the invention, the battery cells are Lithium Ion battery cells.
Abstract:
A battery pack for a cordless power device has a plurality of battery cells disposed in a housing. Battery cells (222) are interconnected with a laminated plate structure (200) having non-conductive layers (224) interspersed with conductive layers (208), at least one of the conductive layers connected to the battery cells to interconnect them.
Abstract:
A generator incorporating a double sided fan operable to generate dual, spaced apart, simuitaneous cooling airflows within the generator to more efficiently cool internai components located on opposite sides of the fan. The double sided fan generates a first cooling airflow into a permanent magnet generator (PMG) assembly and a second cooling airflow through an electronics assembly. The first cooling airflow cools a stator disposed within the PMG assembly, while the second cooling airflow cools a plurality of circuit boards disposed within the electronics assembly. The fan exhausts both cooling airflows radially outwardly.