Abstract:
The present invention involves the use of random copolymer top coats that can be spin coated onto block copolymer thin films and used to control the interfacial energy of the top coat-block copolymer interface. The top coats are soluble in aqueous weak base and can change surface energy once they are deposited onto the block copolymer thin film. The use of self-assembled block copolymers to produce advanced lithographic patterns relies on their orientation control in thin films. Top coats potentially allow for the facile orientation control of block copolymers which would otherwise be quite challenging.
Abstract:
The present invention includes a diblock copolymer system that self-assembles at very low molecular weights to form very small features. In one embodiment, one polymer in the block copolymer contains silicon, and the other polymer is a polylactide. In one embodiment, the block copolymer is synthesized by a combination of anionic and ring opening polymerization reactions. In one embodiment, the purpose of this block copolymer is to form nanoporous materials that can be used as etch masks in lithographic patterning.
Abstract:
The present invention relates to a method for the synthesis and utilization of block copolymer can that form sub-10 nm lamella nanostructures. Such methods have many uses including multiple applications in the semiconductor industry including production of templates for nanoimprint lithography.
Abstract:
The present invention uses vacuum deposited thin films of material to create an interface that non-preferentially interacts with different domains of an underlying block copolymer film. The non-preferential interface prevents formation of a wetting layer and influences the orientation of domains in the block copolymer. The purpose of the deposited polymer is to produce nanostructured features in a block copolymer film that can serve as lithographic patterns.
Abstract:
The present invention discloses diblock copolymer systems that self-assemble to produce very small structures. These co-polymers consist of one block that contains silicon and another block comprised of an oligosaccharide that are coupled by azide-alkyne cycloaddition.