Abstract:
Support members for heliostats (or other components installed in a field) can be hollow and thin- walled, for example, to reduce construction and/or material costs. However, such support members may be relatively fragile and susceptible to buckling or other damage when driven into relatively rocky and/or hard-packed soil using pile-driving. To avoid damaging the support members, the soil may be pre-conditioned to loosen the soil prior to insertion of the support member therein. An auger can drill a hole in the soil and then be reversed such that soil remains in and/or is subsequently re-introduced into the hole after removal of the auger, thereby leaving a substantially loosened column of soil in the hole. Vibration hammering can cause temporary liquefaction of the soil around the support member to insert the support member into the column of soil while reducing the potential for damage to the support member.
Abstract:
A solar energy collection system can include a plurality of heliostats configured to reflect sunlight to a target mounted on a tower. Each of the heliostats can include (i) a mirror assembly, which can include at least one mirror, at least one support arm and a pair of diagonals attached to each end of the support arm, the support arm attached to the backside of the mirror along its entire length, (ii) an elongated central support element, (iii) at least one connecting element configured to attach the mirror assembly to the elongated central support element. The location of attachment points on the at least one connecting element can define the curvature of the mirror in at least one dimension.
Abstract:
A solar heliostat and system are described with various characteristics particularly suitable for concentrating systems with a relatively large number of small heliostats. Other features contribute to high performance, low cost, high durability, and high temperature operation, such as desired for high efficiency thermal power generation.
Abstract:
The fuel injection system for internal combustion engines comprises at least one hydraulically actuated intensifier-injector with inlet (13) and outlet (14) cavities for actuating fluid, one or more interconnected manifolds [rail(s)] (8); with at least one medium pressure pump (5), check valves (8, 9), coarse and fine purification filters (2, 4), a primary pump (3), a sump or tank (1), and electronic control unit (21) and a piping system. The exhaust actuating fluid (19) is fed to the medium pressure pump (5). A cooler (20) is installed between the exhaust of the injector (19) and the inlet (6) of medium pressure pump (5). The system allows driving the medium pressure pump(s) either from the engine crankshaft/camshaft, or autonomously by an electric motor, or by a secondary internal combustion engine. In the two latter cases, the common rail pressure, and respectively the injection pressure, is controlled by modifying the speed of the electric motor or of the secondary internal combustion engine.