Abstract:
A fiber grating pressure sensor includes an optical sensing element (20, 600) which includes an optical fiber (10) having a Bragg grating (12) impressed therein which is encased within and fused to at least a portion of a glass capillary tube (20) and/or a large diameter waveguide grating (600) having a core and a wide cladding and which has an outer transverse dimension of at least 0.3 mm. Light (14) is incident on the grating (12) and light (16) is reflected from the grating (12) at a reflection wavelength lambda 1. The sensing element (20, 600) may be used by itself as a sensor or located within a housing (48, 60, 90, 270, 300). When external pressure P increases, the grating (12) is compressed and the reflection wavelength lambda 1 changes.
Abstract:
A method and apparatus for forming a tube-encased fiber grating includes an optical fiber (28) which is encased within and fused to at least a portion of a glass capillary tube (120) and a substantially transparent index-matching medium (122), such as an optically flat window, having an optically flat surface (126) adjacent to the tube (120). A substantially transparent index-matching intermediate material (e.g., UV transparent oil) (124) is used between the window (22) and the tube (120) to substantially eliminate the interface between the tube (120) and the medium (122). A pair of writing beams (26, 34) are incident on and pass through the medium (122), the tube (120) and intersect and interfere in a region (30) on the fiber (28). Also, the width (Wb) of the writing beams (26,34) may be set to be less than the width (Woil) of the intermediate material (124) to eliminate surface damage (ablations) of the tube (120). Alternatively, the medium (122) may have a geometry to eliminate surface ablations (e.g., a collar shape) and/or to match the shape of the tube (120). More than one grating or pair of gratings may be written in the tube-encased fiber or one or more gratings may be formed in multiple fibers (28, 250) encased in the tube (120). Further, high intensity writing beams (26, 34) on the fiber (28) may be achieved by having the medium (122) have a predetermined thickness (T).
Abstract:
A method and apparatus for forming a tube-encased fiber grating includes an optical fiber (28) which is encased within and fused to at least a portion of a glass capillary tube (120) and a substantially transparent index-matching medium (122), such as an optically flat window, having an optically flat surface (126) adjacent to the tube (120). A substantially transparent index-matching intermediate material (e.g., UV transparent oil) (124) is used between the window (22) and the tube (120) to substantially eliminate the interface between the tube (120) and the medium (122). A pair of writing beams (26, 34) are incident on and pass through the medium (122), the tube (120) and intersect and interfere in a region (30) on the fiber (28). Also, the width (Wb) of the writing beams (26,34) may be set to be less than the width (Woil) of the intermediate material (124) to eliminate surface damage (ablations) of the tube (120). Alternatively, the medium (122) may have a geometry to eliminate surface ablations (e.g., a collar shape) and/or to match the shape of the tube (120). More than one grating or pair of gratings may be written in the tube-encased fiber or one or more gratings may be formed in multiple fibers (28, 250) encased in the tube (120). Further, high intensity writing beams (26, 34) on the fiber (28) may be achieved by having the medium (122) have a predetermined thickness (T).
Abstract:
A strain-isolated Bragg grating temperature sensor includes an optical sensing element (20, 600) which includes an optical fiber (10) having at least one Bragg grating (12) disposed therein which is encased within and fused to at least a portion of a glass capillary tube (20) and/or a large diameter waveguide grating (600) having a core and a wide cladding and having the grating (12) disposed therein, which senses temperature changes but is substantially not sensitive to strains on the element caused by the fiber or other effects. Light (14) is incident on the grating (12) and light (16) is reflected at a reflection wavelength lambda 1. The shape of the sensing element (20, 600) may be other geometries and/or more than one concentric tube may be used or more than one grating or pair of gratings may be used or more than one fiber or optical core may be used. At least a portion of the element (20, 600) may be doped between a pair of gratings (150, 152), disposed therein to form a temperature tuneable laser or the grating (12) or gratings (150, 152) may be constructed as a temperature tuneable DFB laser disposed in the element. Also, the element may have an inner or outer tapered regions (22, 27), respectively, to provide strain relief and/or added pull strength for the fiber (10). Further, the fiber (10) and the tube (20) may be made of different coefficients of thermal expansion for increased sensitivity.
Abstract:
A pressure-isolated Bragg grating temperature sensor includes an optical element (20, 600) which includes an optical fiber (10) having at least one Bragg grating (12) disposed therein which is encased within and fused to at least a portion of an inner glass capillary tube (20) and/or a large diameter waveguide grating (600) having a core and a wide cladding and having the grating (12) disposed therein, which is encased within an outer tube (40) to form a chamber (44). An extended portion (58) of the sensing element that has the grating (12) therein extends inwardly into the chamber (44) which allows the grating (12) to sense temperature changes but isolates the grating (12) from external pressure. An end tube (42) may be attached to the tube (40) and the fiber (10) fed therethrough to form the chamber (44) and a pass-through for the fiber (10). As the external pressure P increases, the outer tube (40) compresses or deflects, the sensing element (20, 600) moves closer to the end tube (42) and/or the outer tube (40) move toward each other. More than one grating or pair of gratings may be used and more than one fiber or optical core may be used. Also, at least a portion of the sensing element may be doped between a pair of gratings (150, 152), to form a temperature tuned laser or the grating (12) or gratings (150, 152) may be configured as a tunable DFB laser disposed in the sensing element.
Abstract:
A method and apparatus for forming a tube-encased fiber grating includes an optical fiber (28) which is encased within and fused to at least a portion of a glass capillary tube (120) and a substantially transparent index-matching medium (122), such as an optically flat window, having an optically flat surface (126) adjacent to the tube (120). A substantially transparent index-matching intermediate material (e.g., UV transparent oil) (124) is used between the window (22) and the tube (120) to substantially eliminate the interface between the tube (120) and the medium (122). A pair of writing beams (26, 34) are incident on and pass through the medium (122), the tube (120) and intersect and interfere in a region (30) on the fiber (28). Also, the width (Wb) of the writing beams (26,34) may be set to be less than the width (Woil) of the intermediate material (124) to eliminate surface damage (ablations) of the tube (120). Alternatively, the medium (122) may have a geometry to eliminate surface ablations (e.g., a collar shape) and/or to match the shape of the tube (120). More than one grating or pair of gratings may be written in the tube-encased fiber or one or more gratings may be formed in multiple fibers (28, 250) encased in the tube (120). Further, high intensity writing beams (26, 34) on the fiber (28) may be achieved by having the medium (122) have a predetermined thickness (T).