Abstract:
An apparatus is provided that measures the speed of sound and/or vortical disturbances propagating in a fluid flow to determine a parameter of the flow propagating through a pipe. The apparatus includes a sensing device that includes an array of pressure sensors used to measure the acoustic and convective pressure variations in the flow to determine a desired parameter. The sensing device includes a unitary strap having a plurality of bands disposed parallel to each other. The bands are interconnected by cross members to maintain the bands a predetermined distance apart. . Each of the bands having a strip of piezoelectric film material mounted along a substantial length of the bands. The piezoelectric film material provides a signal indicative of the unsteady pressures within the pipe. The sensing device includes a conductive shield around the multi-band strap and the piezoelectric film material to provide a grounding shield. A cover is disposed around the entire assembly to protect it from environmental influences. The unitary multi-band strap permits the sensors to be accurate spaced apart during manufacturing and ensures fast and simple installation of the meter on the pipe.
Abstract:
A multi-core optical waveguide 10, such as a dual core waveguide, having a pair of cores 12,14 disposed within a cladding 13 is provided. The cores are equally spaced and parallel to the axis of the waveguide. The cores can be spaced to provide optical coupling between the cores. The outer dimension d2 of the cladding 13 is at least about 0.3 mm; and the outer dimension d1 of the cores 12,14 is such that they propagate in a single spatial mode. The multi-core waveguide may be used in many optical components, such as a bandpass filter and an optical add/drop multiplexer. For the bandpass filter, a Bragg grating having the same reflection wavelength is written into both cores at substancially the same distance from the imput end 86,87 of the cores. The cores 12,14 have the same propagation constants to permit coupling of all the energy of the WDM input signal 84 from one core to the other. The length of the waterguide 100 is substantially equal to the coupling length (Lc), provided all the energy of the through wavelengths is desired at the output end of the second core. Generally, the grating 82 is substantially centered in the waveguide at Lc/2.
Abstract:
A compression-tuned bragg grating-based laser includes a tunable optical element 20,600 which includes either an optical fiber 10 having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube 20 or a large diameter waveguide grating 600 having a core and a wide cladding. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength lambda 1. The tunable element 20,600 is axially compressed which causes a shift in the reflection wavelength of the grating 12 without buckling the element. The shape of the element may be other geometries (e.g., a"dogbone" shape) and(or more than one grating or pair of gratings may be used and more than one fiber 10 or core 612 may be used. At least a portion of the element may be doped between a pair of gratings 150,152, to form a compression-tuned laser or the grating 12 or gratings 150,152 may be constructed as a tunable DFB laser. Also, the element 20 may have an inner tapered region 22 or tapered (or fluted) sections 27. The compression may be done by a PZT, stepper motor, hydraulic device or other actuator.
Abstract:
A fiber optic Bragg grating pressure sensor particularly suited for measuring ambient pressure of a fluid includes a pressuring detecting device (12) such as a glass element whose elastic deformation is proportional to applied pressure. An optical fiber (28) with an integral first grating (33) is attached to the device (12) such that elastic deformation of the device (12) generates a corresponding deformation in the grating (33) and thus a corresponding change of the characteristic reflectance wavelength of the grating (33). A second grating (35) may be formed near the pressure detecting device (12) so as to sense ambient temperature but not be affected by deformation of the device (12). The second grating (35) has a second characteristic reflectance wavelength whose variation as a function of temperature is known. As a result, device (12) deformation or changes in the reflection wavelength of the grating (33) due to temperature can be cancelled from the shift in reflection wavelength of the first grating (33) so that the sensed pressure can be determined. Also, the fiber (28) may have more than one grating or be doped at least between a pair of gratings (160, 162), to form a fiber laser or a DFB fiber laser which lasing wavelength changes with changing pressure.
Abstract:
A fiber grating pressure sensor includes an optical sensing element (20, 600) which includes an optical fiber (10) having a Bragg grating (12) impressed therein which is encased within and fused to at least a portion of a glass capillary tube (20) and/or a large diameter waveguide grating (600) having a core and a wide cladding and which has an outer transverse dimension of at least 0.3 mm. Light (14) is incident on the grating (12) and light (16) is reflected from the grating (12) at a reflection wavelength lambda 1. The sensing element (20, 600) may be used by itself as a sensor or located within a housing (48, 60, 90, 270, 300). When external pressure P increases, the grating (12) is compressed and the reflection wavelength lambda 1 changes.
Abstract:
A method and apparatus for forming a tube-encased fiber grating includes an optical fiber (28) which is encased within and fused to at least a portion of a glass capillary tube (120) and a substantially transparent index-matching medium (122), such as an optically flat window, having an optically flat surface (126) adjacent to the tube (120). A substantially transparent index-matching intermediate material (e.g., UV transparent oil) (124) is used between the window (22) and the tube (120) to substantially eliminate the interface between the tube (120) and the medium (122). A pair of writing beams (26, 34) are incident on and pass through the medium (122), the tube (120) and intersect and interfere in a region (30) on the fiber (28). Also, the width (Wb) of the writing beams (26,34) may be set to be less than the width (Woil) of the intermediate material (124) to eliminate surface damage (ablations) of the tube (120). Alternatively, the medium (122) may have a geometry to eliminate surface ablations (e.g., a collar shape) and/or to match the shape of the tube (120). More than one grating or pair of gratings may be written in the tube-encased fiber or one or more gratings may be formed in multiple fibers (28, 250) encased in the tube (120). Further, high intensity writing beams (26, 34) on the fiber (28) may be achieved by having the medium (122) have a predetermined thickness (T).
Abstract:
A method and apparatus for measuring at least one parameter of a fluid flowing through an internal passage of an elongated body is provided. The internal passage is disposed between a first wall and a second wall, and the first wall and the second wall each include an interior surface and an exterior surface. The method includes the steps of providing an array of at least two ultrasonic sensor units, operating the sensor units to transmit ultrasonic signals at one or more frequencies substantially coincident with at least one frequency at which the transmitted ultrasonic signals resonate within the first wall, receiving the ultrasonic signals with the sensor units, and processing the received ultrasonic signals to measure the at least one parameter of fluid flow within the internal passage.
Abstract:
A tunable optical filter filters is provided that has a pair of tunable Bragg grating units optically coupled to respective ports of a 4-port circulator for filtering a selected wavelength band or channel of light from a DWDM input light. Each grating unit includes an array of Bragg gratings written or embedded within a respective tunable optical element to provide a tunable optical filter that functions over a wide spectral range greater than the tunable range of each grating element. The reflection wavelengths of the array of gratings of each respective gratings element is spaced at a predetermined spacing, such that when a pair of complementary gratings of the grating elements are aligned, the other complementary gratings are misaligned. Both of the optical elements may be tuned to selectively align each complementary grating over each corresponding spectral range.
Abstract:
A fiber Bragg grating peak detection system has a broadband source, a fiber Bragg grating and a variable threshold and/or grating profile peak detection unit. The fiber Bragg grating responds to the broadband optical signal, and further responds to a physical parameter. During the variable threshold peak detection, the variable threshold or grating profile peak detection unit determines a respective local threshold value for each wavelength over a spectral band of the fiber Bragg grating optical signal. During the grating profile peak detection, the detection unit determines a grating profile on each side of the peak.
Abstract:
A fiber Bragg grating reference module provides a precise temperature reference for a temperature probe, including a thermistor, located in close proximity thereto, and includes an optical fiber having a fiber Bragg grating therein, a glass element and a reference housing. The fiber Bragg grating has two ends and with a coefficient of thermal expansion. The glass element anchors the two ends of the fiber Bragg grating, and has a substantially similar coefficient of thermal expansion as the coefficient of thermal expansion of the fiber Bragg grating to ensure that the glass element does not substantially induce strain on the fiber Bragg grating as the ambient temperature changes. The reference housing has a cavity and also has a means for receiving and affixing one end of the fiber Bragg grating and for suspending the fiber Bragg grating in the cavity leaving the other end of the fiber Bragg grating free to move as the ambient temperature changes without inducing strain in the fiber Bragg grating. The glass element includes a glass tube collapsed over the entire length of the fiber Bragg grating. Alternatively, the glass element includes a glass tube locally collapsed at the two ends of the fiber Bragg grating over a part of length of the fiber Bragg grating.