Abstract:
A method for producing an output voltage to a load may include, in a power stage comprising power converter having a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, and an output for producing the output voltage comprising a first output terminal and a second output terminal, controlling the linear amplifier to transfer electrical energy from the input source of the power stage to the load in accordance with one or more least significant bits of a digital input signal, and controlling the power converter in accordance with bits of the digital input signal other than the one or more least significant bits to sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer electrical energy from the input source of the power stage to the load.
Abstract:
NOISE CANCELLATION MICROPHONES WITH SHARED BACK VOLUME A multi-microphone device includes a device package and a plurality of microphones. The device package defines a component cavity and a plurality of vias. The vias comprise openings in the device package extending between the component cavity and an exterior. The microphones are located within the component cavity sharing a back volume in common. The microphones are configured to generate electrical signals in accordance with acoustic pressure in the respective vias. Further, an audio apparatus includes a housing, a speaker and at least two microphones within the housing sharing a back volume in common. A first acoustical conduit extends from a first end in proximity to the first microphone to a first exterior location and a second acoustical conduit extends from a second end in proximity to the second microphone to a second exterior location.
Abstract:
An electronic system and method include a controller to actively control transfer of excess energy to an auxiliary-winding of an auxiliary power dissipation circuit. The excess energy is a transfer of energy from a primary winding of a switching power converter to the auxiliary-winding of the auxiliary power dissipation circuit. In at least one embodiment, the electronic system is a lighting system that includes a triac-based dimmer. The excess energy is energy drawn through the primary-side winding of the switching power converter to provide operational compatibility between a dimmer through which a power supply provides energy to the switching power converter and a load to which the switching power converter provides energy.
Abstract:
An electronic system and method include a controller to actively control power transfer from a primary winding of a switching power converter to an auxiliary-winding of an auxiliary power supply. The switching power converter is controlled and configured such that during transfer of power to the auxiliary-winding, the switching power converter does not transfer charge to one or more secondary-windings of the switching power converter. Thus, the switching power converter isolates one or more secondary transformer winding currents from an auxiliary-winding current. By isolating the charge delivered to the one or more secondary-windings from charge delivered to the auxiliary-winding, the controller can accurately determine an amount of charge delivered to the secondary-windings and, thus, to a load.
Abstract:
In at least one embodiment, the controller senses a leading edge, phase cut AC input voltage value to a switching power converter during a cycle of the AC input voltage. The controller senses the voltage value at a time prior to a zero crossing of the AC input voltage and utilizes the voltage value to determine the approximate zero crossing. In at least one embodiment, by determining an approximate zero crossing of the AC input voltage, the controller is unaffected by any disturbances of the dimmer that could otherwise make detecting the zero crossing problematic. The particular way of determining an approximate zero crossing is a matter of design choice. In at least one embodiment, the controller approximates the AC input voltage using a function that estimates a waveform of the AC input voltage and determines the approximate zero crossing of the AC input voltage from the approximation of the AC input voltage.
Abstract:
A low-delay signal processing system and method are provided which includes a delta-sigma analog-to- digital converter, an oversampling processor, and a delta-sigma digital-to-analog converter. The delta- sigma analog-to-digital converter receives an input or audio signal and generates a digital sample signal at a high oversampling rate. The oversampling processor is connected to the analog-to-digital converter for processing the digital sample signal at the high oversampling rate with low-delay. The delta-sigma digital-to-analog converter is connected to the oversampling processor for receiving the digital sample signal at the high oversampling rate with low-delay for generating an analog signal. The oversampling processor includes a low-delay filter and a programmable delay element. In this manner, the analog signal is produced with a low delay and high accuracy.
Abstract:
A signal path may have an analog path portion and a digital signal path portion. The digital portion may have a selectable digitally-controlled gain and may be configured to convert a digital audio input signal into an analog input signal in conformity with the selectable digitally-controlled gain, the digital signal path portion comprising a modulator including a forward path and a feedback path. The forward path may include a loop filter for generating a filtered signal responsive to the digital audio input signal and a feedback signal, a quantizer responsive to the filtered signal for generating a quantized signal, and a first gain element configured to apply the selectable digitally-controlled gain to a signal within the forward path. The feedback path may be configured to generate the feedback signal responsive to the quantized signal, the feedback path including a second gain element having a gain inversely proportional to the selectable digitally-controlled gain.
Abstract:
In accordance with embodiments of the present disclosure, a control circuit may be configured to, responsive to an indication to switch between gain modes of a signal path having an analog path portion and a digital signal path portion, switch a selectable analog gain of the analog path portion between a first analog gain and a second analog gain, switch a selectable digital gain of the digital signal path portion between a first digital gain and a second digital gain, wherein the product of the first analog gain and the first digital gain is approximately equal to the product of the second analog gain and the second digital gain, and control an analog response of the signal path to reduce the occurrence of audio artifacts present in the output signal as a result of the switch between gain modes of the signal path.
Abstract:
In accordance with embodiments of the present disclosure, a processing system may include a plurality of processing paths including a first processing path and a second processing path, a digital-to-analog stage output, and a controller. The first processing path may include a first digital-to-analog converter for converting the digital input signal into a first intermediate analog signal, the first digital-to-analog converter configured to operate in a high-power state and a low-power state. The second processing path may include a second digital-to-analog converter for converting a digital input signal into a second intermediate analog signal. The digital-to-analog stage output may be configured to generate an analog signal comprising a sum of the first intermediate analog signal and the second intermediate analog signal. The controller may be configured to operate the first digital-to-analog converter in the lower-power state when a magnitude of the digital input signal is below a threshold magnitude.
Abstract:
A power distribution system and method includes a controller that is configured to control a switching power converter. In at least one embodiment, the controller includes a compensation current control circuit to control a compensation current that reduces and, in at least one embodiment, approximately eliminates variations in current drawn by the controller during a particular operational time period. In at least one embodiment, the power distribution system is a lamp that includes the controller, a switching power converter, and one or more light sources, such as light emitting diodes.