Abstract:
Techniques are provided for optimizing multicast routing in a network. At a router device, a message is sent to one or more physical devices. The message is configured to solicit a response indicating a network assignment for each of the physical devices. A response message is received from each of the physical devices. The response message comprises network assignment information for each of the physical devices. For each of the physical devices, the network assignment information is translated into a segment identifier. The segment identifier is distributed to other router devices in the network.
Abstract:
A plurality of line cards with each line card having a respective network forwarding engine and a respective outgoing interface (OIF) list and at least one fabric module communicatively coupled with each line card with each fabric module can have a respective network forwarding engine. The local OIF list can be asymmetrically programmed. The network forwarding engine of a line card can be configured to receive a multicast packet, compare a multicast address associate with the received multicast packet with entries in the local OIF list of the line card and forward the received multicast packet to at least one interface associated with the multicast address in response to the comparison resulting in a match.
Abstract:
Aspects of the subject technology relate to systems for arbitrating direct forwarder ("DF") instantiation between VPC peers used to facilitating the transport of bidirectional multicast traffic over a L2/L3 network boundary. In some aspects, arbitration of DF instantiation on a given VPC peer can include determining a first set of metrics for a first VPC switch, determining a second set of metrics for a second VPC switch, and determining, at the first VPC switch, whether to instantiate a designated forwarder (DF) operation based on a comparison of the first set of metrics and the second set of metrics. Methods and machine-readable media are also provided.
Abstract:
Methods and systems may be provided for detecting the moves of a multicast source. Sites that were previously designated as an active source may be immediately expired instead of waiting for route expiry. All multicast receiver sites may deterministically learn the new multicast source without additional LSP churn in ISIS for resolving the multicast source move conflict between the old and new source sites.
Abstract:
In one embodiment an approach is provided to efficiently program routes on line cards and fabric modules in a modular router to avoid hot spots and thus avoid undesirable packet loss. Each fabric module includes two separate processors or application specific integrated circuits (ASICs). In another embodiment, each fabric module processor is replaced by a pair of fabric module processors arranged in series with each other, and each processor is responsible for routing only, e.g., IPv4 or IPv6 traffic. The pair of fabric module processors communicates with one another via a trunk line and any packet received at either one of the pair is passed to the other of the pair before being passed back to a line card.
Abstract:
In one embodiment, a method includes receiving information on layer 2 topologies at a network device in a core network, mapping one or more Virtual Local Area Networks (VLANs) to the layer 2 topologies to provide differentiated services in said layer 2 topologies, defining multiple paths for each of the layer 2 topologies, and forwarding a packet received at the network device on one of the multiple paths. An apparatus for providing differentiated services in layer 2 topologies is also disclosed.