Abstract:
Polymer concrete compositions comprising a silane-modified polymer (SMP) composition which comprises a silylated polymer, an epoxy resin, e.g., an epoxy-terminated prepolymer, and a cure catalyst, e.g., tetraethyltetraamine, exhibit good adhesion to wet concrete.
Abstract:
A method for exposing a substrate to water under superatmospheric pressure at a temperature of at least 70°C includes (a) applying a reaction mixture to a substrate, which reaction mixture has an isocyanate index of at least 10 and includes an aromatic polyisocyanate component, a polyol component having a polyol with a hydroxyl equivalent weight of at least 500, and a catalyst component having an isocyanate trimerization catalyst, and at least partially curing the reaction mixture to form a polyisocyanurate or polyurethane-isocyanurate polymer having a glass transition temperature of at least 80°C, and (b) exposing the substrate and the polyisocyanurate or polyurethane-isocyanurate polymer to water under superatmospheric pressure at a temperature of at least 70°C.
Abstract:
Embodiments relate to a polyurethane coating film that has improved water barrier properties combined with mechanical strength. According to embodiments, a polyurethane encapsulate includes a polyurethane film that is a reaction product of an aromatic isocyanate and a polyol, and the polyol includes a butylene oxide based polyether polyol in an amount of at least 35 wt% based on a total weight of the polyol. The polyurethane encapsulate further includes a particulate material that is enclosed by the polyurethane film.
Abstract:
Joints in an electrical cable are made by joining the ends of the conductors of two cables and applying and then curing a reaction mixture over the joint to form an elastomeric seal. The reaction mixture includes a carbon-Michael acceptor compound, a carbon-Michael donor compound and a carbon-Michael reaction catalyst.
Abstract:
Embodiments of the present disclosure are directed towards using a carbon-Michael compound. As an example, a method of using a carbon-Michael compound to reduce heat transfer can include locating the carbon-Michael compound between a heat provider and a heat receptor, where the carbon-Michael compound is a reaction product of a multifunctional acrylate compound with a multifunctional Michael donor, and the heat provider has a temperature from 100 C to 290 C.
Abstract:
Embodiments of the invention provide for compositions including a crosslinkable silane-terminated polymer having at least one crosslinkable silyl group in each molecule. The crosslinkable silane-terminated polymer comprises a reaction product of at least a isocyanate capped hydrosilylated polymer and a polyol having a nominal functionality of at least 2 which is at least one of a polycarbonate polyol, a natural oil based polyol, a polyoxyalkyleneamine, a difunctional aromatic amine, a polybutyloxide polyether polyol, and a polytetramethylene glycol.