Abstract:
A polycrystalline diamond construction comprising a body of polycrystalline diamond material is formed of a mass of diamond grains exhibiting inter- granular bonding and defining a plurality of interstitial regions therebetween, and a non-diamond phase at least partially filling a plurality of the interstitial regions to form non-diamond phase pools, the non-diamond phase pools each having an individual cross-sectional area. The percentage of non- diamond phase in the total area of a cross-section of the body of polycrystalline diamond material and the mean of the individual cross- sectional areas of the non-diamond phase pools in the image analysed using an image analysis technique at a selected magnification is less than 0.7, or less than 0.340 microns squared, or between around 0.005 to 0.340 microns squared depending on the percentage of non-diamond phase in the total area of the cross-section of the polycrystalline diamond construction. There is also disclosed a method of making such a construction.
Abstract:
A polycrystalline diamond construction comprises diamond grains exhibiting inter-granular bonding and defining a plurality of interstitial regions, and a non-diamond phase at least partially filling a plurality of the interstitial regions to form non-diamond pools. The percentage of non-diamond phase in the total area of a cross-section of the body of polycrystalline diamond material is between around 0 to 5 %, and the average nearest neighbour distance between grains of the non-diamond phase is less than around 1.3 microns in an analysed image of a cross-section through the body of polycrystalline material when analysed using an image analysis technique at a magnification of around 1000 and an image area of 1280 by 960 pixels; or is between around 5 to 10 %, and the average nearest neighbour distance between grains of the non-diamond phase is less than around 1.04 microns, or is between around 10 to 15 %, and the average nearest neighbour distance between grains of the non-diamond phase is less than around 1.04 microns, or is between around 15 to 30%, and the average nearest neighbour distance between grains of the non-diamond phase is less than around 0.8 microns.
Abstract:
A method of producing coated ultra-hard abrasive material, in particular coated diamond and CBN material. In a first step, an element capable of forming (singly or in combination) carbides, nitrides or borides to the surface(s) of the abrasive material is is applied using a hot coating process. At least one outer layer of a coating material selected from the group comprising transition metals, carbide, nitride, boride, oxide and carbonitride forming metals, metal carbides, metal nitrides, metal borides, metal oxides and metal carbonitrides, boronitrides and borocarbonitrides is applied over the inner layer by physical vapour deposition or chemical vapour deposition. Typically the inner layer elements come from groups IVa, Va, VIa, IIIb and IVb of the periodic table and include, for example, vanadium, molybdenum, tantalum, indium, zirconium, niobium, tungsten, aluminium, boron and silicon. The outer coating is preferably applied by reactive sputtering where a reactive gas is admitted to the sputtering chamber, resulting in the deposition of a compound of the reactive gas and the element being sputtered.
Abstract:
A coated super-hard abrasive comprises a core of super-hard abrasive material, which is typically diamond or cBN based, an inner layer of a metal carbide, nitride or carbonitride chemically bonded to an outer surface of the super-hard abrasive material and an outer layer of tungsten physically deposited on the inner layer. The inner layer is preferably a titanium carbide coating in the case of a diamond abrasive core, or a titanium nitride or boride coating in the case of a cBN abrasive core.
Abstract:
A coated super-hard abrasive comprises a core of super-hard abrasive material, which is typically diamond or cBN based, an inner layer of a metal carbide, nitride, boride or carbonitride chemically bonded to an outer surface of the super-hard abrasive material and an outer layer of a metal carbonitride, in particular titanium carbonitride. The outer layer is preferably applied by physical vapour deposition. The inner layer is formed from an element capable of forming (singly or in combination) carbides, nitrides or borides to the surface(s) of the abrasive material when applied using a hot coating process.
Abstract:
A coated super-hard abrasive comprises a core of super-hard abrasive material, typically diamond or cBN based, an inner layer of a metal carbide, nitride, boride, carbonitride or boronitride chemically bonded to an outer surface of the super-hard abrasive material and an outer layer of a metal, metal alloy or a combination of metals or metal alloys deposited on the inner layer. Examples of metals or metal alloys that can be applied as an outer layer include metals from group IVa, Va or Vla transition metals, including tungsten, titanium, chromium, molybdenum, and zirconium, and metals from the first row transition metals (Ti to Cu), particularly the non magnetic metals or alloys of these that are amenable to magnetron sputtering, and elements from groups Ilib and IVb of the periodic table, such as B, Al, Si.
Abstract:
A coated super-hard abrasive comprises a core of super-hard abrasive material, which is typically diamond or cBN based, an inner layer of a metal carbide, nitride, boride, boronitride or carbonitride chemically bonded to an outer surface of the super-hard abrasive material and one or more outer layers of a metal carbide, nitride, boride or carbonitride physically deposited on the inner layer. In the case of a single outer layer, the single outer layer has a composition gradient extending through its thickness, and in the case of more than one outer layer, the composition of each layer is different to provide a gradient of material through the various layers. In the case of several outer layers, each layer may also include a composition gradient.
Abstract:
A coated super-hard abrasive comprises a core of super-hard abrasive material, which is typically diamond or cBN based, an inner layer of a metal carbide, nitride, boride or carbonitride chemically bonded to an outer surface of the super-hard abrasive material and an outer layer of a metal carbide, nitride or boride physically deposited on the inner layer, the metal in both layers being the same. The outer layer is preferably applied by physical vapour deposition. The inner and outer layers are both preferably titanium or chromium carbide coatings in the case of a diamond abrasive core, or titanium or chromium nitride or boride coatings in the case of a cBN abrasive core.