Abstract:
A computationally implemented system and method that is designed to, but is not limited to: electronically receiving electric vehicle prospective use information associated with aspects indicating one or more future travel plans involving prospective use of an electric vehicle, the electric vehicle including one or more wireless electrical energy transfer receiving devices and one or more electrical energy storage devices; and electronically obtaining electrical energy transfer aspect information regarding wireless electrical energy transfer from one or more wireless electrical energy transfer imparting stations to the one or more wireless electrical energy transfer receiving devices of the electric vehicle for storage by the one or more electrical energy storage devices of the electric vehicle. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.
Abstract:
A system for detecting intruding viewers of a display and responding to an intrusion by editing content. The system includes an electronic media display, a sensor, and a processing circuit. The processing circuit is configured to obtain information from the sensor, determine a visibility envelope of the electronic media display device, analyze the information from the sensor to determine a presence of an intruder within the visibility envelope, distinguish the intruder from an authorized user, and edit any displayed content.
Abstract:
A system for detecting and responding to an intruding camera. The system includes an electronic media display device having a screen configured to display content, a sensor, and a processing circuit. The processing circuit is configured to obtain information from the sensor, analyze the information to determine a presence of a camera, and edit any displayed content in response to the presence of the camera.
Abstract:
Structures and protocols are presented for using or otherwise relating to a first mobile device (a smartphone or tablet computer or wearable device, e.g.) configured to be shared by two or more parties such that a subset of the parties may be addressed selectively (in content directed to such parties, e.g.) in a cost-effective manner.
Abstract:
Structures and protocols are presented for signaling a status or decision concerning a wireless service or device within a region to a network participant or other communication device (smartphone or motor vehicle, e.g .).
Abstract:
Structures and protocols are presented for signaling a status or decision concerning a wireless service or device within a region to a network participant or other communication device (smartphone or vehicle, e.g.).
Abstract:
Computationally implemented methods and systems include determining presence of one or more external linking devices within communication range of a wearable computing device designed to be worn by a person, the determining being based, at least in part, on one or more signals transmitted by the one or more external linking devices and received by the wearable computing device, and the one or more external linking devices designed to communicate beyond the communication range of the wearable computing device, and directing the wearable computing device to communicate beyond the communication range via at least one of the one or more external linking devices that were determined to be within the communication range of the wearable computing device. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
Computationally implemented methods and systems include receiving one or more signals through a directional antenna of a wearable computing device, the one or more signals having been transmitted by one or more electronic devices; determining that the one or more electronic devices are within a spatial pod surrounding the wearable computing device based, at least in part, on the one or more signals received by the wearable computing device; and obtaining at least access to one or more functionalities from the one or more electronic devices that were determined to be within the spatial pod of the wearable computing device. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
Systems, methods, computer-readable storage mediums including computer-readable instructions and/or circuitry for control of transmission to a target device with a cloud-based architecture may implement operations including, but not limited to: detecting, at least in part via a cloud-based architecture, an elapsed time since a prior authorization of a transmission to a target device; comparing, at least in part via a cloud-based architecture, the elapsed time since a prior authorization of a transmission to a target device against a threshold transmission interval associated with a target device; and authorizing, at least in part via a cloud-based architecture, at least one transmission to a target device in response to the comparison.
Abstract:
A computationally implemented system and method that is designed to, but is not limited to: electronically presenting output of mobile operating system operated code as user interface content presented on one or more user interface outputs of a mobile communication device based at least upon electronic reception of communication traffic related to use of the mobile communication device as a communication relay node of one or more ad hoc communication networks called into operation from standby status, the ad hoc communication network for service of communication between one or more origination electronic communication devices and one or more destination electronic communication devices. In addition to the foregoing, other method aspects are described in the claims, drawings, and text forming a part of the present disclosure.