Abstract:
In various embodiments, a surgical instrument is provided that may comprise an end effector for performing a surgical procedure on tissue, for example. The end effector may comprise at least one energy delivery surface and heat dissipation means for dissipating heat from at least a portion of the end effector. For example, in at least one embodiment, the end effector may comprise a first jaw, a second jaw, and a cutting member. The cutting member may comprise a cutting surface and a body, which may define a cavity and at least one opening communicating with the cavity. A fluid may be moved through the cavity to and/or from the opening(s). Additionally, in at least one embodiment, a surgical instrument's end effector may comprise a first jaw, a second jaw, a cutting member, and at least one heat pipe. Various other heat dissipation means are also disclosed.
Abstract:
Various embodiments are directed to a surgical instrument comprising, a shaft, and an end effector. The shaft may be coupled to the handle and may extend distally along a longitudinal axis. The end effector may be positioned at a distal end of the shaft and may comprise first and second jaw members and a reciprocating member. The first and second jaw members may define first and second longitudinal slots. One or both of the jaw members may be pivotable relative to the other about a pivot point. The reciprocating member may be translatable distally and proximally parallel to the longitudinal axis and through the first and second longitudinal slots. A distal portion of the reciprocating member may define a blade. The instrument may comprise an overtube translatable distally to exert a force on a portions of the first and second jaw members tending to close the first and second jaw members.
Abstract:
An apparatus for operating on tissue comprises a shaft, an acoustic waveguide, and an end effector. The acoustic waveguide extends along the shaft and is configured to transmit ultrasonic vibration. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The clamp arm is pivotable toward the ultrasonic blade. The end effector defines a first longitudinal region and a second longitudinal region. The end effector is configured to clamp tissue between the clamp arm and the ultrasonic blade in the first longitudinal region. The end effector is configured to sever tissue with the ultrasonic blade in the second longitudinal region.
Abstract:
An end-effector assembly configured to be attached to a surgical instrument. The end- effector assembly comprises a first portion and a second portion comprising a cavity. At least one of the first portion and the second portion is movable relative to the other jaw. The end- effector assembly comprises a fastening means removably positioned within the cavity and at least one electrode.
Abstract:
An apparatus for operating on tissue comprises a shaft, an acoustic waveguide, and an end effector. The acoustic waveguide extends along the shaft and is configured to transmit ultrasonic vibration. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The clamp arm is pivotable toward the ultrasonic blade. The end effector defines a first longitudinal region and a second longitudinal region. The end effector is configured to clamp tissue between the clamp arm and the ultrasonic blade in the first longitudinal region. The end effector is configured to sever tissue with the ultrasonic blade in the second longitudinal region.
Abstract:
An electrosurgical surgical instrument that includes an end effector, wherein the end effector can comprise first and second jaws which can be opened and closed in order to capture tissue therebetween. In various embodiments, the first and second jaws can comprise one or more electrodes configured to apply a voltage across the tissue, wherein at least one of the electrodes can comprise i) a conductive material positioned within a non-conductive, or high- resistance, material or ii) a pressure sensitive conductive material, or iii) a plurality of electrodes may each comprise of a positive temperature coefficient material having a different switching temperature or iv) electrodes can be independently and/or sequentially operated. During and/or after energizing the electrodes, a cutting member can be advanced to cut the tissue.
Abstract:
An ultrasonic clamp coagulator assembly that is configured to permit selective cutting, coagulation and clamping of tissue during surgical procedures. An elongated portion of the instrument can be configured for endoscopic applications and has an outside diameter of less than 6mm. The construction includes a clamping mechanism, including a clamp arm pivotally mounted at the distal portion of the instrument, which is specifically configured to create a desired level of tissue clamping forces. The clamping mechanism includes a two-piece pad design and pad material that enables the higher tissue clamping forces and a force-limiting mechanism that effectively smoothes out abusive tissue forces.
Abstract:
An end effector comprises a first jaw, a second jaw, a firing beam, and a lockout feature. The second jaw pivots relative to the first jaw from an open position to a closed position. The firing beam has a sharp distal end and translates between the first and second jaws. The firing beam translates from a proximal position to a first distal position to pivot the second jaw to the closed position. The end effector applies bipolar RF energy when the firing beam is in the first distal position. The firing beam then translates to a second distal position to sever tissue captured between the first and second jaws. The lockout feature prevents the firing beam from advancing from the first distal position to the second distal position until the lockout feature is actuated.
Abstract:
Various forms are directed to a method for operating an ultrasonic surgical instrument. The ultrasonic surgical instrument may be activated by generating a drive signal provided to the ultrasonic drive system to drive the end effector. A plurality of input variables may be applied to a multi-variable model to generate a multi-variable model output, where the multi-variable model output corresponds to an effect of the ultrasonic instrument on tissue. The plurality of input variables may comprise at least one variable describing the drive signal and at least one variable describing a property of the ultrasonic surgical instrument. When the multi-variable model output reaches a threshold value, feedback may be generated indicating a corresponding state of at least one of the ultrasonic surgical instrument and tissue acted upon by the ultrasonic surgical instrument.
Abstract:
An electrosurgical instrument can comprise a handle, a shaft, and an end effector, wherein the end effector can be rotatably coupled to the shaft by an articulation joint. The instrument can further comprise a drive member and the articulation joint can comprise flexible support members which can be configured to support the drive member. The instrument can further comprise supply wires electrically coupled to electrodes in the end effector and a wire tensioning device configured to prevent the supply wires from accumulating slack within the articulation joint. The drive member can comprise a plurality of flexible layers wherein some of the layers can be comprised of an electrically insulative material and other layers can be comprised of an electrically conductive material which is in electrical communication with a cutting member in the end effector and/or electrodes positioned within the end effector. A surgical instrument can comprise a handle and an end effector, wherein the end effector can comprise first and second jaws which can be opened and closed in order to capture tissue therebetween. The surgical instrument can further comprise a shaft extending between the handle and the effector and means for articulating the end effector relative to the shaft. The articulating means can comprise a portion of the shaft which is rotatable about a first axis in order to articulate the end effector about a second axis. In at least one embodiment, the shaft can comprise a first portion including a cam and a second portion including a cam follower, wherein the rotation of the second portion and the interaction of the cam and cam follower can cause the second portion to pivot relative to the first portion.