Abstract:
The invention discloses a method of controlling a transmembrane pressure (TMP) in a crossflow filtration apparatus, comprising the steps of: a) providing a crossflow filtration apparatus comprising a pump (21) fluidically connected via a retentate compartment (33) of a crossflow filter (32) and a length of flexible tubing to a regulator valve (1; 101) acting on the flexible tubing, wherein the regulator valve is a high precision pinch valve. The apparatus further comprises a first pressure transducer (22) adapted to measure a pressure between the retentate compartment and the regulator valve, a second pressure transducer (39) adapted to measure a pressure between the pump and the retentate compartment and a third pressure transducer (40) adapted to measure a pressure at a permeate outlet (36) of the crossflow filter, and a control unit (23) electrically or electromagnetically connected to said regulator valve, the first, second and third pressure transducers and optionally to the pump; b) pumping a liquid with the pump via the second pressure transducer, through the retentate compartment via the length of flexible tubing, the first pressure transducer and the regulator valve; c) controlling the regulator valve with the control unit, such that a TMP calculated by formula (I) TMP = (P inlet + P outlet )/2 - P perm corresponds to a predetermined TMP value or to an interval between two predetermined TMP values, wherein P inlet is a pressure reading from the second pressure transducer, P outlet is a pressure reading from the first pressure transducer and P perm is a pressure reading from the third pressure transducer.
Abstract:
A valve (100) for a bioprocess liquid apparatus (199) comprises tubular sections (101, 102, 103) inside which valve seat means (155) are arranged. A plunger arrangement (150) is configured to selectively interact with the valve seat means to close and open the tubular sections in response to a magnetic field provided by solenoid arrangements (104, 105), the solenoid arrangements being arranged at the bioprocess liquid apparatus. A flow path device comprising such a valve and a bioprocess liquid apparatus and a method of handling a bioprocess liquid are also disclosed.
Abstract:
The invention discloses embodiments of different high precision pinch control valves having an accuracy in the micron range and a method of controlling a transmembrane pressure (TMP) in a crossflow filtration apparatus, comprising the steps of: a) providing a crossflow filtration apparatus comprising a pump (21) fluidically connected via a retentate compartment (33) of a crossflow filter (32) and a length of flexible tubing to a regulator valve (1;101) acting on the flexible tubing, wherein the regulator valve is a high precision pinch valve. The apparatus further comprises a first pressure transducer (22) adapted to measure a pressure between the retentate compartment and the regulator valve, a second pressure transducer (39) adapted to measure a pressure between the pump and the retentate compartment and a third pressure transducer (40) adapted to measure a pressure at a permeate outlet (36) of the crossflow filter, and a control unit (23) electrically or electromagnetically connected to said regulator valve, the first, second and third pressure transducers and optionally to the pump; b) pumping a liquid with the pump via the second pressure transducer, through the retentate compartment via the length of flexible tubing, the first pressure transducer and the regulator valve; c) controlling the regulator valve with the control unit, such that a TMP calculated by formula (I) TMP = (P inlet + P outlet )/2 - P perm (I)
Abstract:
The invention discloses a first unit (1) for treatment of a bioprocess liquid comprising a first lateral face (2), a second lateral face (3) and a front face (4) which meets the two said lateral faces. The front face comprises: a plurality of valves (7) adapted to receive and act upon one or more legs (8) of a disposable flow path (6); optionally one or more pumps (10) adapted to receive and act upon one or more legs of the disposable flow path; optionally one or more sensors (11) adapted to receive and to measure one or more parameters in one or more legs of the disposable flow path; wherein the plurality of valves and optional pumps and sensors are vertically offset from each other to give one or more legs of a disposable flow path received by said valves and optional pumps and sensors a slope of at least 3.0 degrees from the horizontal plane (h).