Abstract:
The invention discloses a first unit (1) for treatment of a bioprocess liquid comprising a first lateral face (2), a second lateral face (3) and a front face (4) which meets the two said lateral faces. The front face comprises: a plurality of valves (7) adapted to receive and act upon one or more legs (8) of a disposable flow path (6); optionally one or more pumps (10) adapted to receive and act upon one or more legs of the disposable flow path; optionally one or more sensors (11) adapted to receive and to measure one or more parameters in one or more legs of the disposable flow path; wherein the plurality of valves and optional pumps and sensors are vertically offset from each other to give one or more legs of a disposable flow path received by said valves and optional pumps and sensors a slope of at least 3.0 degrees from the horizontal plane (h).
Abstract:
A disposable, crossflow membrane stack suitable for use in an ion exchange unit, the stack comprising alternate dilution compartments and concentration compartments, each compartment being defined by a flat cation-permeable membrane (2) and a flat anion-permeable membrane (1) and at least two edges along which the cation- permeable and an anion-permeable membranes are permanently secured together wherein the cation-permeable membranes and/ or the anion-permeable membranes have a textured surface profile which keep said membranes apart and/or from touching each other and wherein the edges secured together define the direction in which liquid may flow through the compartments. Also claimed are ion exchange units comprising the stack, optionally comprising a quick- release securement means to allow facile attachment and release of modular units comprising the stacks.
Abstract:
Die vorliegende Erfindung betrifft ein Filtermodul sowie ein Verfahren zur Herstellung eines Hohlfasermembranbündels mit wenigstens zwei konzentrisch angeordneten Filterstufen. Des Weiteren betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines Hohlfasermembranbündels, ein Disposable und eine Blutbehandlungsvorrichtung.
Abstract:
Presteralized manifolds are provided which are designed for sterile packaging and single-use approaches. Disposable tubing and flexible-wall containers are assembled via aseptic connectors. These manifolds interact with valves and pumping equipment which can be operated by a controller which provides automated and accurate delivery of biotechnology fluid. The manifold also being used in conjunction with one or more conductivity sensors used to measure the conductivity of the biotechnology fluid. Such sensors interact with the controller or are connected to a separate user interface. The combination of disposable tubing, flexible-wall containers, aseptic connectors, manifold, controller, and conductivity sensors provides an aseptic environment while avoiding or reducing cleaning and quality assurance procedures.
Abstract:
A fluid filtration assembly includes a filter housing having a first end for fluid connection with a fluid storage vessel. A filter cartridge is disposable within the filter housing, and a plunger pump is coupled at a second end of the filter housing. The plunger pump includes a housing having a rigid portion and a flexible portion. The flexible portion has a plunger-engaging portion for coupling to the plunger of an actuator. The flexible portion selectively movable with respect to the rigid portion via the actuator. The filter cartridge can be a hollow fiber filter. The plunger pump can be configured to induce alternating tangential flow in at least a portion of the assembly. The fluid filtration assembly can be provided as a disposable single-use arrangement.
Abstract:
The present invention provides a disposable ultra-filtration system comprising a pipette tip and a membrane filtration cartridge, wherein the cartridge includes a dead-end channel In use, a piston in the pipette pressurizes air within the channel; the pressurized an can subsequently move the piston and cause a reverse flow back through the membrane of the cartridge, unplugging the pores thereof Also disclosed is an automated workstation incorporating the disposable ultra-filtration system and a system comprising the automated workstation, useful for measuring the amount of free therapeutic drug and free hormone in a sample.
Abstract:
The invention concerns a bag comprising a first conduit (13C) which extends longitudinally between a flow pump connector (1 1 C) emerging on a first side (68) and a tangential filter connector (1 1 M) emerging on a second side (69); a second conduit (13B) which extends longitudinally from a first side of said conduit (13C) between a supply container connector (1 1 B) emerging on said first side (68), and another tangential flow connector (1 1 N) emerging on said second side (69); a third conduit (13H) which extends from a second side of said conduit (13C), starting at a collecting container connector (1 1 J), until it enters said first conduit (13C); and a fourth conduit (13A) which extends from the first side of said conduit (13C), starting at a transfer pump connector (1 1A), until it enters said second conduit (13B).
Abstract:
The invention concerns a device comprising a base; a circuit comprising a bag comprising two flexible films and conveying network connectors, and a press (9) comprising a first shell (16) disposed upright on a front face (5) of said base (2) and a second shell (17) mounted on said first shell (16), said first shell (16) and second shell (17) clamping said bag to form conduits; said bag comprising first through apertures on one side and said first shell (16) comprising hooking studs (106) on an upper part, which studs (106) pass through said first apertures.
Abstract:
The PRP separator-concentrator of this invention is suitable for office use or emergency use for trauma victims. The PRP separator comprises a motorized centrifugal separation assembly, and a concentrator assembly. The centrifugal separator assembly comprises a centrifugal drum separator that includes an erythrocyte capture module and a motor having a drive axis connected to the centrifugal drum separator. The concentrator assembly comprises a water-removal module for preparing PRP concentrate. The centrifugal drum separator has an erythrocyte trap. The water removal module can be a syringe device with water absorbing beads or it can be a pump-hollow fiber cartridge assembly. The hollow fibers are membranes with pores that allow the flow of water through the fiber membrane while excluding flow of clotting factors useful for sealing and adhering tissue and growth factors helpful for healing while avoiding activation of platelets and disruption of any trace erythrocytes present in the PRP.
Abstract:
In various embodiments, the present invention provides a process for separating target proteins from non-target proteins in a sample comprising increasing the concentration of the target proteins and non-target proteins in the sample and subsequently delivering the concentrated sample to a chromatography device. In other embodiments, the invention relates to a process for increasing the capacity of a chromatography device for a target protein by delivering a concentrated sample comprising the target protein to a chromatography device.