Abstract:
The present invention is directed to a tubular article of manufacture in an annular or tubular shape having an outer diameter, an inner diameter and a length comprising one or more materials selected from the group consisting of: a) an immiscible blend of polymers comprising one or more polyetherimides, having more than one glass transition temperature wherein the polyetherimide has a glass transition temperature greater than 217° Celsius; b) a miscible blend of polymers, comprising one or more polyetherimides, having a single glass transition temperature greater than 180° Celsius; or, c) a single polyetherimide having a glass transition temperature of greater than 247° Celsius.
Abstract:
Blends of polysulfones, polyethersulfones and polyphenylene ether sulfones with resorcinol based polyesters, or resorcinol based polyester carbonate polymers, an silicone copolymers have improved flame resistance. Peak heat release energy is reduced and the time to reach peak heat release is increased.
Abstract:
A method to reduce haze in the production of fire resistant polycarbonate compositions comprising flame retardant salts, wherein the salt is blended with a first polycarbonate to form a concentrate, and the concentrate is then added to a second polycarbonate resin.
Abstract:
A thermoplastic composition comprising in combination a dialkyl bisphenol polycarbonate homopolymer or copolymer comprising repeat carbonate units having the following structure; wherein R 1 and R 2 are independently at each occurrence a C 1 -C 4 alkyl, n and p are each an integer having a value of 1 to 4, and T is selected from the group consisting of C 5 -C 10 cycloalkanes attached to the aryl groups at one or two carbons, C 1 -C 5 alkyl groups, C 6 -C 13 aryl groups, and C 7 -C 12 aryl alkyl groups; a flame retardant; and an anti-dripping agent is disclosed. The compositions have excellent scratch resistance as well as an improved balance of physical properties such as melt flow, while at the same time maintaining their good flame performance.
Abstract:
The present invention relates generally to the field of electrical connectors comprising either: a) an immiscible blend of polymers comprising one or more polyetherimides, having more than one glass transition temperature wherein the polyetherimide hais a glass transition temperature greater than 217° Celsius; b) a miscible blend of polymers, comprising one or more polyetherimides, having a single glass transition temperature greater than 180° Celsius; or, c) a single polyetherimide having a glass transition temperature of greater than 247° Celsius.
Abstract:
A composite material comprises an electrically conductive material disposed over at least a portion of a substrate wherein the substrate comprises either: a) an immiscible blend of polymers having more than one glass transition temperature and one of the polymers has a glass transition temperature greater than 180 degrees Celsius; b) a miscible blend of polymers having a single glass transition temperature greater than 217 degrees Celsius; or, c) a single virgin polymer having a glass transition temperature of greater than 247 degrees Celsius.