Abstract:
The present disclosure generally relates to integrated core-shell investment casting molds that provide a filament structure corresponding to a cooling hole pattern in the surface of the turbine blade or stator vane, which provide a leaching pathway for the core portion after metal casting. The invention also relates to core filaments that can be used to supplement the leaching pathway, for example in a core tip portion of the mold.
Abstract:
Methods of making metal objects are provided. These methods generally involve adding a metal powder slurry into a sacrificial mold, such as a mold made by three dimensional printing, and heating the slurry/mold mixture. The heating steps may include curing the slurry to make a green part inside the mold, debinding to burn off the mold and binder to make a brown part, sintering, and hot isostatic pressing. Metal products, such as aircraft engine parts, are also provided.
Abstract:
The present disclosure generally relates to partial integrated core-shell investment casting molds that can be assembled into complete molds. Each section of the partial mold may contain both a portion of a core and portion of a shell. Each section can then be assembled into a mold for casting of a metal part. The partial integrated core-shell investment casting molds and the complete molds may be provided with filament structures corresponding to cooling hole patterns on the surface of the turbine as or stator vane, which provide a leaching pathway for the core portion after metal casting. The invention also relates to core filaments that can be used to supplement the leaching pathway, for example in a core tip portion of the mold.
Abstract:
The present disclosure generally relates to integrated core-shell investment casting molds that provide an integrated ceramic filter. These integrated core-shell investment casting molds also provide filament structures corresponding to cooling hole patterns on the surface of the turbine blade or stator vane, which provide a leaching pathway for the core portion after metal casting. The invention also relates to core filaments that can be used to supplement the leaching pathway, for example in a core tip portion of the mold.
Abstract:
The present disclosure generally relates to integrated core-shell investment casting molds including a main core portion, a core tip portion, and a shell portion with at least one cavity between the core portion and the shell portion. The cavity defines the shape of a cast component upon casting and removal of the ceramic mold. These molds also provide filament structures corresponding to cooling hole patterns in the surface of the turbine blade or the stator vane, which provide a leaching pathway for the core portion after metal casting. At least two ceramic tip filaments connect the core tip portion and the shell portion and eliminate the need for tip pins or a shell lock to hold the tip plenum core in place during casting. The invention also relates to core filaments that can be used to supplement the leaching pathway, for example in a core tip portion of the mold.
Abstract:
The present disclosure generally relates to integrated core-shell investment casting molds that provide filament structures corresponding to cooling hole patterns on the surface of the turbine blade or stator vane, which provide a leaching pathway for the core portion after metal casting. The invention also relates to core filaments that can be used to supplement the leaching pathway, for example in a core tip portion of the mold.
Abstract:
An apparatus and a method for manufacturing an axi-symmetric part. The apparatus includes a vessel configured to contain the powder. The vessel is also configured to receive a part such that at least a portion of the part contacts the powder contained within the vessel. A first energy source is configured to generate a first beam of energy. The first beam of energy is configured to melt the powder at a first predetermined location such that the melted powder fuses to the part. The apparatus further includes means for rotating the part radially.