Abstract:
The present disclosure generally relates to methods for additive manufacturing (AM) that utilize ghost support structure in the process of building objects, as well as novel ghost support structures to be used within these AM processes. The ghost support structures include a portion of powder that is scanned with an energy beam having insufficient power to fuse the powder. The ghost supports control timing of the additive manufacturing process and allow portions of the object to cool to a desired temperature before adjacent portions of the object are scanned.
Abstract:
An apparatus and a method for manufacturing an axi-symmetric part. The apparatus includes a vessel configured to contain the powder. The vessel is also configured to receive a part such that at least a portion of the part contacts the powder contained within the vessel. A first energy source is configured to generate a first beam of energy. The first beam of energy is configured to melt the powder at a first predetermined location such that the melted powder fuses to the part. The apparatus further includes means for rotating the part radially.
Abstract:
A DLP projector apparatus (10) for projecting a monochromatic display comprising a plurality of monochromatic light sources (111-113). The DLP projector (10) being adapted to radiate from each micromirror of its DMD chip (100) an image comprising a plurality of radiated locations which are shifted with respect to each other. The DLP projector apparatus (10) comprising a controller unit that is adapted to control the radiation from the plurality of light sources (111-113) to the image according to a radiation scheme in an object production file. The DLP projector apparatus (10) is also provided with an imaging table(240) that is adapted to be moved in a plane perpendicular to an imaging beam of the DLP projector apparatus (10). The movements of the table are coordinated and synchronized with the imaging scheme of the DLP projector apparatus (10). The imaging scheme and the movements of the table are controlled according to a radiation scheme in an object production file.
Abstract:
Verfahren zur additiven Fertigung eines dreidimensionalen Bauteils (1) aus mehreren Bauteilschichten durch mehrfaches inkrementelles, insbesondere schichtweises, Hinzufügen von pulver-, draht- oder bandförmigem, insbesondere metallischem, Bauteilausgangsmaterial und, insbesondere inkrementelles, formgebendes Konsolidieren durch jeweils selektives Schmelzen und/oder Sintern des Bauteilausgangsmaterials mittels einer durch mindestens eine Energiequelle, insbesondere lokal, gemäß einer Scanstrategie eingebrachten Wärmemenge, wobei die Auslegung der Trajektorien (30, 31, 32) des Warmeeintrags auf Basis einer, insbesondere simulationsbasiert, ermittelten lokalen Wärmeableitungsfähigkeit erfolgt, ein Verfahren zur Berechnung einer Scanstrategie zwecks entsprechender Anschauung einer Anlage zur additiven Fertigung eines dreidimensionalen Bauteils sowie eine diesbezügliche Anlage.
Abstract:
The invention relates to a method for manufacturing an object from a material by means of additive manufacturing using a plurality of solidifying devices for solidifying said material in stacked layers by means of electromagnetic radiation. Said method comprises the step of defining, by a data processing unit, at least two solidifying device allocations. In each of said solidifying device allocations said plurality of solidifying devices are allocated to respective parts of said layer such that said parts cover said layer. The method further comprises calculating, by said data processing unit, for each of said at least two solidifying device allocations, respective allocated part manufacturing times representing times for each of said plurality of solidifying devices for solidifying said respective allocated part of said layer, wherein said calculating takes into account an expected disturbance area from solidifying said material by one of said plurality of solidifying devices, wherein said disturbance area relates to at least an expected fume above said layer. The data processing unit then determines the manufacturing throughput time, and selects a definite allocation.
Abstract:
Verfahren zur additiven Fertigung eines dreidimensionalen Bauteils (1) aus mehreren Bauteilschichten (Li, Lk) durch mehrfaches inkrementelles, insbesondere schichtweises, Hinzufügen von pulver-, draht- oder bandförmigem, insbesondere metallischem, Bauteilausgangsmaterial und, insbesondere inkrementelles, formgebendes Konsolidieren des Bauteilausgangsmaterials durch jeweils selektives Schmelzen und/oder Sintern mittels einer durch mindestens eine Energiequelle, insbesondere lokal, gemäß einer Scanstrategie eingebrachten Wärmemenge, wobei das Verfahren eine Aufteilung jeder Bauteilschicht (Li, Lk) in Segmente (S1, S2, S3,..., S12) umfasst, dadurch gekennzeichnet, dass die Aufteilung einer Bauteilschicht in Segmente und/oder die zeitliche Reihenfolge der Erzeugung einzelner Segmente und/oder die Auslegung der Scanvektoren innerhalb eines Segmentes und/oder die zeitliche Reichenfolge der Scanvektoren innerhalb eines Segmentes bei Erzeugung von jeweiligen segmentierten Bauteilschichten (Li, Lk) auf Basis einer, insbesondere simulationsbasiert, ermittelten lokalen Wärmeableitungsfähigkeit oder anhand einer Funktion derselben in einer jeweiligen Bauteilschicht erfolgt und ein Verfahren zur Berechnung der Scanstrategie zwecks entsprechender Ansteuerung einer Anlage zur additiven Fertigung eines dreidimensionalen Bauteils, sowie selbige.
Abstract:
A DLP projector apparatus is provided for projecting a monochromatic display from plurality of monochromatic light sources. The DLP projector is adapted to radiate from each micromirror of its DMD chip an image comprising a plurality of radiated locations which are shifted with respect to each other. The DLP projector apparatus comprise a controller unit that is adapted to control the radiation from the plurality of light sources to the image according to a radiation scheme in an object production file. A DLP projector apparatus is also provided comprising an imaging table that is adapted to be moved in a plane perpendicular to an imaging beam of the projector. The movements of the table are coordinated and synchronized with the imaging scheme of the projector. The imaging scheme and the movements of the table are controlled according to a radiation scheme in an object production file.
Abstract:
The present disclosure provides three-dimensional (3D) printing methods, apparatuses, software, and systems, some of which utilize one or more detectors that may be used to detect characteristics of the 3D object, e.g., in real-time during its formation. The present disclosure provides methods, apparatuses, software, and systems for generating different cross sections of one or more energy beams used for 3D printing of the 3D object.
Abstract:
A method is provided for making a workpiece in an additive manufacturing process in which a starting material is solidified in a layer by layer fashion, with each layer of the workpiece being solidified using a patterned image of radiant energy configured as a two-dimensional grid array of pixels. The method includes: for each layer of the workpiece, determining a preferred angular orientation of the grid array, relative to the layer; and orienting the patterned image to the preferred angular orientation before solidifying the starting material for that layer.