Abstract:
An apparatus for wireless transmissions and reception. The apparatus includes a radio frequency (RF) circuitry, a baseband circuitry, and a conversion circuitry. The RF circuitry is configured to transmit and receive a signal in an RF frequency. The baseband circuitry is configured to process a transmit signal or a receive signal in a baseband frequency. The conversion circuitry is configured to perform frequency conversion between the baseband and RF frequencies. The conversion circuitry is configured to convert a baseband signal received from the baseband circuitry to an RF signal in a first RF frequency if a transmit frequency is a second RF frequency or to the RF signal in the second RF frequency if the transmit frequency is the first RF frequency, and send the RF signal after frequency conversion to the RF circuitry. The RF circuitry converts the received RF signal to the transmit frequency for transmission.
Abstract:
Some demonstrative embodiments include apparatuses, systems and method of disconnecting a wireless communication link. For example, a wireless communication device may include a controller to receive placement-related information indicating a change in one or more placement-related attributes of the wireless communication device, during communication over a wireless communication link, and based on the orientation-related information to disconnect the wireless communication link.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Systems, apparatuses, and methods for managing interference in a deployment of wireless devices include functionality for measuring interference in each of a plurality of available millimeter wave channels for each of a plurality of pairs of wireless devices operating in a millimeter wave band and in mutual proximity, selecting a channel for each pair of wireless devices from the plurality of available channels based on the measured interference, and transmitting data between members of each pair in the selected channel.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.