Abstract:
A computing device including logic at least partially comprising hardware logic to set display modes is disclosed. The logic may be configured to determine if the computing device is closed, and, if so, set the computing device to a single tablet display mode in which the computing device is to render a tablet interface at a first display panel. The logic may be configured to determine if the computing device is open, and, if so, set one of two display modes comprising a dual tablet display mode in which the computing device is to render a tablet interface at the first display panel and a second display panel; or a laptop mode in which the computing device is to render content at the first display panel and the second display panel is to receive input via a virtual input device.
Abstract:
Two extended embedded Display Port displays may be enabled by using a single set of panel power sequencing (PPS) signals from a chipset to enable the two embedded Display Port panels. To enhance the user experience, the backlight module brightness is controlled by making use of a pin available on a system on a chip (SOC) and modification of drivers. This helps to save power when only one panel is used. When both panels are used simultaneously, power savings can be achieved by using backlight control signals.
Abstract:
By converting a first color space to a second color space, using a two-dimensional lookup table in said second color space, and converting from said second color space to said first color space, it may be possible to use one or more two-dimensional lookup tables (LUTs) to do a task conventionally handled by three-dimensional lookup tables. This may reduce storage requirements and memory bandwidth requirements in some embodiments. In general a color pixel with N color components can be processed with n number of M dimensional LUT where M
Abstract:
Techniques for managing a three-dimensional (3D) graphics display mode are described. In one embodiment, for example, an apparatus may comprise a processor circuit and a graphics processing module, and the graphics processing module may be operative by the processor circuit to execute a graphics context in a 3D display mode if a 3D-aware graphics context data structure includes an entry corresponding to the graphics context or to execute the graphics context in a non-3D display mode if the 3D-aware graphics context data structure does not include an entry corresponding to the graphics context. Other embodiments are described and claimed.
Abstract:
An access point in a wireless network is connected to wireless devices. When any of the devices becomes inaccessible, the device sends a notification to the access point to indicate the inaccessibility. The access point then receives and stores incoming messages that are destined for the device. The access point forwards the messages to the device when the device is ready to receive the message.