Abstract:
A physical channel processor on a wireless device and method for precoding for spatial multiplexing in an open-loop multiple-input multiple-output (MIMO) mobile communication system is disclosed. The method comprises the operation of receiving an input vector block from a layer mapper. The input vector block includes user equipment-specific reference signals (UE-RSs) or data in a physical downlink shared channel (PDSCH). The operation of generating a large delay cyclic delay diversity (CDD) vector block from the input vector block using a precoder configured for large delay CDD on an antenna port follows. The data can be resource element mapped with UE-RSs or channel-state information reference signals (CSI-RSs) in a physical resource block (PRB).
Abstract:
Embodiments of a system and method for transmitting data from an access point in a multiple user multiple input multiple output (MU-MIMO) system are provided. A first indication of signal quality (ISQ) is received at the access point from a first station and a second ISQ is received from a second station. The access point sets a first power level and a first modulation and coding scheme (MCS) for transmission of a first aggregated media access control (MAC) protocol data unit (A-MPDU) to the first station as a function of the first ISQ and an amount of payload data corresponding to the first A-MPDU. The access point also sets a second power level and a second MCS for transmission of a second A-MPDU as a function of the second ISQ and an amount of payload data corresponding to the second A-MPDU.
Abstract:
Briefly, a mechanism to performing beam tracking during an exchange of data packets disclosed. A perturbation on a transmit or receive beamforming vector is added for the transmission or reception of each data packet. The perturbation may be a minimum allowed phase rotation.
Abstract:
Technology for mitigating edge effect interference in a Coordinated MultiPoint (CoMP) system having multiple CoMP clusters is disclosed. In an example, a method can include a macro node transmitting a cell range expansion request to user equipments (UEs) within a cell. A CoMP cluster for nodes within the cell that includes UEs operating with the cell range expansion can be generated. Blanked resources between a plurality of macro nodes for the CoMP clusters in the CoMP system can be coordinated using a muting preference including a blanked resource.
Abstract:
Technology is discussed for supporting wireless communication paths from an antenna array with a vertical directional component. Examples reduce training feedback for increased numbers of communication paths by only reporting on a subset of Reference Signals (RSs) provided for various vertical beam configurations. Additional examples reduce feedback with virtual measurements based on a difference between RS measurements. One such measurement can come from full set of RSs for a reference beam configuration and another from a partial set of RSs for an additional beam configuration. Such virtual measurements can also be based on cross correlation for beamforming weights associated with the two configurations. Several examples of preparing and sending measurement reports consistent with Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards are discussed. The supporting technology also increases diversity and reduces a power differential between spatially multiplexed layers transmitting a common codeword.
Abstract:
Bidirectional iterative beam forming techniques are described. An apparatus may include a wireless device having an antenna control module operative to initiate beam formation operations using an iterative training scheme to form a pair of communications channels for a wireless network, the antenna control module to communicate training signals and feedback information with a peer device via the transceiver and phased antenna array using partially or fully formed high rate channels, and iteratively determine antenna-array weight vectors for a directional transmit beam pattern for the phased antenna array using feedback information from the peer device. Other embodiments are described and claimed.
Abstract:
A system and method for distributed scheduling of transmissions between device-to-device (D2D) communications is disclosed. The distributed scheduling method employs a distributed scheduling structure in which device identifiers rather than connection identifiers are used to enable scheduling of a D2D data transfer between devices in a wireless neighborhood. The novel distributed scheduling structure is scalable to a larger number of D2D devices than is feasible with a connection ID-based tone matrix.
Abstract:
Embodiments of a system and method for managing feedback in a MU-MIMO system. An access point can announce one or more of mobile stations that are to receive downlink information in a first frame. The access point can also send a sounding package to the one or more mobile stations and receive feedback from the one or more mobile stations according to the feedback schedule. The feedback may be based on the reception of the sounding package.
Abstract:
In some embodiments a beamforming method is disclosed. The method can include transmitting a beam having a channel defined by a maximum ration transmission vector (MRT) and receiving a first response from a receiver, where the first response has first information such as parameters related to the transmitted beam. Using the parameters and the initial MRT another directional transmission can be made. A similar process can determine a maximum combining ratio for a receiver. Set up communications between the transmitter and the receiver can be reduced by omitting data from transmission that can be acquired by other means such as from memory or calculations. Additional embodiments are also disclosed.
Abstract:
In a wireless communication network, specific portions of the communication may combine directional transmission with omnidirectional reception. In particular, sector- level directional transmission may be established through sector sweeps, followed by antenna training for more directionality. In some embodiments, collisions during the exchange may be reduced by having different network devices use different sub-channels or different time slots. In some embodiments, each network may restrict its network communications to a single sub-channel that is different than the sub-channels used by adjacent networks.