Abstract:
Provided herein are systems and methods for recycling and supplementing off-gas from a gas fed reaction process. The systems and methods are particularly useful for bioprocesses that convert hydrogen gas into one or more biosynthetic products. By maintaining separate hydrogen and oxygen feed gas streams, and forming a recycle gas that introduces a target component of the supply gas to the bioreactor within a target concentration range, the yields, productivities, and safety profiles of the bioprocess can be enhanced.
Abstract:
The present disclosure provides methods for controlling oxygen concentration during aerobic biosynthesis, e.g., fermentation. The method may comprise feeding an oxygen-containing gas into a vessel including a fermentation feedstock and reacting the fermentation feedstock with the oxygen-containing gas to form a broth including a gaseous phase dispersed within the broth. The gaseous phase may comprise any unreacted oxygen from the oxygen-containing gas. The method further includes reducing the concentration of the unreacted oxygen in the dispersed gaseous phase to less than the limiting oxygen concentration ("LOC") for flammability before separating the gaseous phase from the fermentation broth. The concentration of the unreacted oxygen in the gaseous phase is reduced by employing oxygen removal schemes or oxygen dilution schemes.
Abstract:
This document describes biochemical pathways for producing one or more of pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine and 1,7-heptanediol by forming one or two terminal functional groups, comprised of carboxyl, amine or hydroxyl groups, in a C7 aliphatic backbone substrate produced from succinate semialdehyde or pyruvate. These pathways, metabolic engineering and cultivation strategies described herein rely on the aldol condensation of succinate semialdehyde and pyruvate.
Abstract:
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate produced from chorismate or benzoate. These pathways, metabolic engineering and cultivation strategies described herein rely on the anaerobic benzoyl-CoA degradation pathway enzymes.
Abstract:
Embodiments of the present invention relate to methods for the biosynthesis of di- or trifunctional C7 alkanes in the presence of isolated enzymes or in the presence of a recombinant host cell expressing those enzymes. The di- or trifunctional C7 alkanes are useful as intermediates in the production of nylon-7, nylon-7,x, nylon-x,7, and polyesters.
Abstract:
The present disclosure generally relates to methods for the recovery of amines from aqueous mixtures. In particular, the disclosure relates to methods for separating amines from amine-containing aqueous mixtures by adjusting the pH of the aqueous mixture relative to the highest pKa value for the amines.
Abstract:
This disclosure relates to strategies for in vivo production of certain carbon-based products, for example, aminated aliphatic compounds having a carbon chain length of C5-C19. Specifically, 7-aminoheptanoic acid is produced using a transaminase from Chromobacterium violaceum from pimelate semialdehyde using alanine, GABA (gamma aminobutyric acid) or 6-ACA as amino donors.
Abstract:
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on enzymes or homologs accepting methyl ester shielded dicarboxylic acid substrates.
Abstract:
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the fatty acid synthesis pathway and oxidative cleavage of long chain acyl-[acp] intermediates by a monooxgenase (e.g., cytochrome P450) such as that encoded by BioI from microorganisms such as Bacillus subtillis .
Abstract:
This document describes biochemical pathways for producing butadiene by forming two vinyl groups in a butadiene synthesis substrate. These pathways described herein rely on enzymes such as mevalonate diphosphate decarboxylase, isoprene synthase, and dehydratases for the final enzymatic step.