Abstract:
A novel, reliable, moisture migration preventing cable connector for non-standard port attachment is provided. Such a connector device includes a deformable sealing element that is clear of mating port threads during connector attachment to a cable port, but that deforms upon actuation of a mated thread device rotated around the connector subsequent to cable port attachment. Such deformation allows for the sealing element to enter the open areas of the mated threads thereby preventing the migration of moisture into the cable connector, protecting not only the connector threads, but also the mating port, as well as the internal dielectric and center conductor of the cable itself. A method of providing a signal connection and transfer in a cable system is also encompassed within this invention.
Abstract:
An F-type connector for connecting a coaxial cable to an interface port and extending an RF shield therebetween is provided. The connector includes a connector body having a first end and a second end, a post, attached to the connector body, a threaded nut, rotatable with respect to the post and also axially movable with respect to the connector body between a first position and a second position, a biasing member, operable to move the nut, and a joint stop element, located to interact with the biasing member and introduce obstructive structure that impedes axial movement of the nut.
Abstract:
Disclosed herein is a coaxial cable interface port locking terminator including an outer terminator housing and an inner connector body housed within the outer terminator housing. The coaxial cable interface port locking terminator further includes a ratcheting device in operable communication with the outer terminator housing and the inner connector body, the ratcheting device preventing rotation of the outer terminator housing with respect to the inner connector body when the outer terminator housing is rotated in the first direction, the ratcheting device including at least one separate component from the outer terminator housing and the inner connector body. Furthermore, rotation of the outer terminator housing in a second direction does not cause rotation of the inner connector body in the second direction.
Abstract:
A coaxial cable continuity connector comprising a connector body, a post engageable with connector body, wherein the post includes a flange having a tapered surface, a nut, wherein the nut includes an internal lip having a tapered surface, wherein the tapered surface of the nut oppositely corresponds to the tapered surface of the post when the nut and post are operably axially located with respect to each other when the coaxial cable continuity connector is assembled, and a continuity member disposed between and contacting the tapered surface of the post and the tapered surface of the nut, so that the continuity member endures a moment resulting from the contact forces of the opposite tapered surfaces, when the continuity connector is assembled, is provided.
Abstract:
A coaxial cable connector comprising a connector body; a post engageable with connector body, wherein the post includes a flange; a nut, axially rotatable with respect to the post and the connector body, the nut having a first end and an opposing second end, wherein the nut includes an internal lip, and wherein a second end portion of the nut corresponds to the portion of the nut extending from the second end of the nut to the side of the lip of the nut facing the first end of the nut at a point nearest the second end of the nut, and a first end portion of the nut corresponds to the portion of the nut extending from the first end of the nut to the same point nearest the second end of the nut of the same side of the lip facing the first end of the nut; and a continuity member disposed within the second end portion of the nut and contacting the post and the nut, so that the continuity member extends electrical grounding continuity through the post and the nut is provided.
Abstract:
A connector coaxial cable connector comprising a connector body having an outer ramped surface, a post, engageable with the connector body, a coupling member, axially rotatable with respect to the post, and a compression portion structurally integral with the connector body, the compression portion having a ramped inner surface, wherein the inner ramped surface is configured to cooperate with the outer ramped surface during compression of the compression portion onto a portion of the connector body. Furthermore, an associated method is also provided.
Abstract:
A compression connector for smooth walled, corrugated, and spiral corrugated coaxial cable includes an insulator disposed within the body, wherein the insulator contains a central opening therein which is dimensioned smaller than a collet portion which seizes a center conductor of the coaxial cable. The connector also includes a clamp disposed inside the body as well as a compression sleeve assembly. An intermediate connector element includes a transitional surface which interacts with the clamp. When an axial force is applied to the compression sleeve, the clamp is forced by the transitional surface into the body, causing the clamp to squeeze onto an outer conductor layer of the coaxial cable. At approximately the same time, the collet portion is forced through the central opening of the insulator, causing the collet portion to squeeze onto the center conductor.
Abstract:
A coaxial cable continuity connector comprising a connector body, a post engageable with connector body, wherein the post includes a flange having a tapered surface, a nut, wherein the nut includes an internal lip having a tapered surface, wherein the tapered surface of the nut oppositely corresponds to the tapered surface of the post when the nut and post are operably axially located with respect to each other when the coaxial cable continuity connector is assembled, and a continuity member disposed between and contacting the tapered surface of the post and the tapered surface of the nut, so that the continuity member endures a moment resulting from the contact forces of the opposite tapered surfaces, when the continuity connector is assembled, is provided.
Abstract:
A coaxial cable connector having a connector body attached to a post, the post having a first end, a second end, and a flange proximate the first end, wherein the post is configured to receive a center conductor surrounded by a dielectric of a coaxial cable, a port coupling element attached to the post, and a seal member disposed proximate the dielectric to create a seal around the dielectric to prevent entry of environmental elements is provided. Additionally, a connector having a post with an internally tapered surface proximate a first end, the internally tapered surface tapering radially inward toward the first end to compress the dielectric to form a seal around the dielectric is provided. Furthermore, an associated method is also provided.
Abstract:
An assembly for connecting a coaxial cable to a connecting port. The connecting assembly has a tubular fitting with a central axis and axially spaced first and second ends. The tubular fitting is operatively engageable with a coaxial cable directed into axially overlapping relationship with the tubular fitting at the first end of the tubular fitting. The tubular fitting has a first connecting assembly including a first connecting part that is movable around the central axis selectively in (a) a first direction to a secured state and (b) oppositely to the first direction from the secured state into a released state. In the secured state, the first connecting part maintains a coaxial cable, operatively engaged with the tubular fitting, connected to the connecting port. A shield assembly blocks radial access to the first connecting assembly in a manner that allows the first connecting part to be accessed and moved from the secured state into the released state . with the shield assembly in the operative state. The shield assembly cooperates with the tubular fitting to allow the shield assembly to be placed, and maintained, in the operative state by relative axial movement of the shield assembly and tubular fitting.