Abstract:
According to the present invention a method which prevents excessive adsorption of microvesicles on the surfaces of tools used for sampling, storing and handling body flu- ids containing microvesicles is provided. The method comprises the steps of: selecting said a tool from the a list plurality of tools including but not limited to needles, blood tubing, blood bags, catheters, Eppendorf tubes, pipettes or the like, providing said tool from said plurality of tools, providing a source of positively and negatively charged particles of high density, selecting a source assuring for formation of positively and negatively charged particles of high density and treating a surface of said tool by applying short pulses of said source of particles next to or on the said surface of said tool to assure surface modification of said surface by reacting said positively and negatively charged particles of high density on said surface. The method according to the present invention ensures contacting of tools with short pulses of highly ionized gas comprising both positively and negatively charged particles, the pulses being essentially short enough to avoid excessive heating of materials used for collecting, sampling, storage, transport and isolation of micro vesicles and the density of both positively and negatively charged particles which is essentially high enough to cause roughening of said tools on sub-micrometer or nanometer scale. Especially tools treated according to the present inventive method prevents excessive adsorption of microvesicles on the surfaces of said tools used for collecting, sampling, storing, transporting and isolating of microvesicles or the like. The method according to the present invention enables higher yields and lower frag- mentation of microvesicles for instance by preventing adsorption of this valuable diag- nostic material on the surface of different tools used for isolation and detection. Accordingly, the present invention also provides increasing the roughness of a material by the method according to the present invention. In particular the material which is used to produce diagnostic or medical tools or devices. (Fig. 1)
Abstract:
The present invention relates to methods and apparatus for depositing carbon nanostructures such as three-dimensional graphene mesh using non-equilibrium gaseous plasma of high power density. Methods are disclosed for rapid deposition of randomly distributed graphene sheets on surfaces of substrates using decomposition of CO molecules of a high potential energy, and said excited CO molecules interacting with a substrate. Another method uses a carbon containing precursor in condensed form and a processing gas comprising oxygen or an oxygen containing gas. The three-dimensional graphene mesh prepared according to the methods of invention is useful in different applications such as light absorbents, fuel cells, super- capacitors, batteries, photovoltaic devices and sensors of specific gaseous molecules.
Abstract:
The present invention relates to methods for depositing vertically oriented carbon nanowalls (CNWs) using non-equilibrium gases such as gaseous plasma. Methods are disclosed for rapid deposition of uniformly distributed nanowalls on large surfaces of substrates using ablation of bulk carbon materials by reactive gaseous species, formation of oxidized carbon-containing gaseous molecules, ionization of said molecules and interacting said molecules, neutral or positively charged, with a substrate. The CNWs prepared are useful in different applications such as fuel cells, lithium ion batteries, photovoltaic devices and sensors of specific gaseous molecules.