Abstract:
The present invention relates to a melter assembly (1) for melting solid raw batch material, which comprises a submerged combustion melter section (3) and an afterburner section (5), wherein the submerged combustion melter section is designed to contain the melt bath (4) at a maximum melt level (4') and comprises at least one submerged combustion burner (21) and a melt outlet (9), and wherein the afterburner section (5) is designed as a space contiguous with, and in continuity of, the internal space defined by the submerged combustion melter section (3), and arranged over the maximum melt level (4') of the submerged combustion melter section (3). The afterburner section (5) is dimensioned such that the gases escaping from the melt bath (4) remain for at least 2 seconds at a temperature of at least 850 °C in said afterburner section (5), prior to being evacuated to the environment. The invention also relates to a process making use of such melter assembly (1).
Abstract:
The invention relates to a submerged combustion burner (1) and to a melter comprising submerged combustion burners (1). The burner comprises at least one oxidant feeding tube, at least one fuel feeding tube, a burner head having a peripheral envelope, the fuel and oxidant feeding tubes abutting against the burner head, at least two, preferably at least three, peripheral outward directed nozzles, each of the nozzles having a nozzle outlet, the nozzle outlets being arranged on a peripheral line on the peripheral envelope of the burner head, the nozzle outlet axis being inclined by an angle of 5 to 30° to the horizontal, and the nozzles practiced in the burner head being connected to the oxidant feeding tube and to the fuel feeding tube.
Abstract:
The present invention relates to a process for producing a boron containing glass, comprising melting raw materials including boron compounds in a submerged combustion melter (11), withdrawing flue gases from said melter and recovering heat from said flue gases in appropriate heat recovery equipment prior to release into the environment.
Abstract:
The present invention relates to a process for melting solid batch material, comprising the steps of introducing solid batch material into a melter, and melting the solid batch material in the melter by submerged combustion and subjecting the melt to a flow pattern which when simulated on a computer by making use of common fluid dynamic equations shows a substantially toroidal melt flow pattern in the melt, comprising a major centrally inwardly convergent flow at the melt surface, the central axis of revolution of the toroid being substantially vertical. The invention further relates to a melter assembly for carrying out the process. The toroidal melt flow pattern is achieved by suitable arrangement, angle and spacing of multiple submerged combustion burners in the floor of the melter
Abstract:
A submerged combustion melter 10 is arranged with a vertical melting chamber 11, which may be cylindrical, and at least five submerged combustion burners 21-26 in the bottom base 13, the burners so spaced apart from each other and from the walls and angled from the vertical that in use a toroidal flow pattern can be achieved, providing intensive mixing. The claims also pertain to a method of melting a vitrifiable material from solid batch by submerged combustion melting.
Abstract:
Continuous basalt fibers are produced by melting basalt rock in a submerged combustion melter, and by forming said melt into continuous basalt fibers.
Abstract:
The claims define a submerged combustion melter comprising a submerged combustion burner (1) comprising three concentric tubes, all being closed at one end and open at the same opposite end, the internal tube (3) being connected to a source of oxygen containing gas (7), the middle tube (9) surrounding the internal tube (3) being connected to a source of fuel gas (11), and the outer tube (15) being connected to a source (19) of oxygen containing gas. The claims are also directed to a method of introducing a flame and/or combustion products into a melt from a submerged combustion burner and also directed to the use of the burner as a submerged combustion burner in a melter.
Abstract:
The invention relates to a glass melting process comprising melting glass cullet in a submerged combustion melter comprising at least one submerged burner, under oxidizing conditions, wherein the glass cullet comprises increased levels of contaminants.
Abstract:
The invention relates to a material feeding system (1) for a melter comprising: (i) a substantially horizontal feeding barrel (5) designed to feed solid material through the melter wall (9) into the melt (11) contained in the said melter, and arranged below the level (13) of the melt (11) contained in the melter (30), (ii) said feeding barrel (5) comprising a material input opening (15) and material output opening (17), the material output opening (17) leading into the melt (11) contained in the melter (30), said feeding barrel (5) comprising an internal feeder (20) designed to push solid material (7) loaded through the material input opening (15), in the direction of the longitudinal barrel axis (6) toward the material output opening (17), the end of the internal feeder (20) on the material output side extending at a minimum at a distance from the internal melter surface (19) of two (2) to ten (10) times the diameter of the feeding barrel (5), preferably three (3) to eight (8) times the diameter of the feeding barrel, more preferably three (3) to six (6) times the diameter of the feeding barrel or three (3) to five (5) times the diameter of the feeding barrel (5). The invention further covers a submerged combustion melter equipped with above material feeding system and a process for feeding material into a melter.
Abstract:
Fly ash and/or rice husk ash is molten in a submerged combustion melter, possibly together with fluxing agent and/or further vitrifiabel material, and vitrified upon cooling.