Abstract:
Die Erfindung betrifft eine Vorrichtung (1) zur Erzeugung einer dampfhaltigen Gasatmosphäre an einer Außenwandung (2.1) und/oder Innenwandung (2.2) eines Schmelze führenden Kanals (2) oder in einem Raum einer Anlagenkomponente (A) mit - einem Behältnis (1.1) zur Aufnahme einer Flüssigkeit (F) und eines Trägergases (G), wobei in dem Behältnis (1.1) ein Dampfraum (D) ausgebildet ist, in welchem das Trägergas (G) mit einem Flüssigkeitsdampf unter Ausbildung eines Dampf-Gas-Gemischs (DGG) vermischbar ist und - mindestens einer Verteilerleitung (1.9) zur Verteilung des Dampf-Gas- Gemischs (DGG) entlang der Außenwandung (2.1) und/oder Innenwandung (2.2) oder im Raum der Anlagenkomponente (A).
Abstract:
A nanocomposite material (10) that can withstand prolonged contact with molten glass and glass precursor melts may include a cermet substrate (12) and a glass reaction material (14) overlying the cermet substrate. The cermet substrate may include a refractory metal matrix (16) and ceramic particles (18) embedded in the refractory metal matrix, and the glass reaction material may be the reaction product of molten glass and the cermet substrate in an inert environment.
Abstract:
La présente invention concerne un produit réfractaire fondu ayant la composition chimique moyenne suivante, en pourcentages en masse sur la base des oxydes et pour un total de 100%: Al 2 O 3 : complément à 100%; Fe 2 O 3 : 0,6% - 5,0% et/ou TiO2 : 1,5% - 10,0%; Fe 2 O 3 + TiO 2 ≤ 10,0%; Na 2 O+K 2 O : 1,0% - 8,0%; SiO 2 : 0,2% - 2,0%; CaO+BaO+SrO : ≤ 0,5%; Autres espèces oxydes : ≤ 1,5%. Application à un four de fusion de verre.
Abstract translation:本发明涉及具有以下平均化学成分的熔融耐火产品:以氧化物为基准的总重量百分比:Al2O3:余量为100%; Fe 2 O 3:0.6%-5.0%和/或TiO 2:1.5%-10.0%; Fe2O3 + TiO2≤10.0%; Na2O + K2O:1.0%〜8.0% SiO2:0.2%-2.0%; CaO + BaO + SrO:≤0.5% 其他氧化物种类:≤1.5%。 本发明还涉及在玻璃熔化炉中使用所述耐火产品。
Abstract:
A molten glass delivery apparatus is disclosed comprising a fining vessel including a wall, wherein a thickness of the fining vessel wall varies circumferentially. In some embodiments, an upper portion of the fining vessel in contact with a gaseous atmosphere within the fining vessel is thinner than the remaining portion of the fining vessel in contact with molten glass. A method of fining molten glass is also disclosed.
Abstract:
Low-carbon monolithic refractories are provided. Methods of manufacturing glass employing low-carbon monolithic refractories are also provided. Methods and apparatuses for glass manufacture for reducing the formation of carbon dioxide blisters during glass manufacture are also provided.
Abstract:
Methods and systems produce a molten mass of foamed glass in a submerged combustion melter (2) (SCM). Routing foamed glass to a fining chamber defined by a first flow channel (30) fluidly connected to and downstream of the SCM 2). The flow channel floor (34) and sidewalls(38) have sufficient glass-contact refractory to accommodate expansion of the foamed glass as fining occurs during transit through the fining chamber. The foamed glass is separated into an upper glass foam phase (35) and a lower molten glass phase (37) as the foamed glass flows toward an end of the flow channel distal from the SCM. The molten glass is then routed through a transition section (40) fluidly connected to the distal end of the flow channel (30). The transition section inlet end construction has at least one molten glass inlet aperture (41), such that the inlet aperture(s) are positioned lower than the phase boundary between the upper (35) and lower (37) phases.